Cargando…
Gene transcription in differentiating immature T cell receptor(neg) thymocytes resembles antigen-activated mature T cells
Early in ontogeny thymocytes have a surface marker phenotype that resembles activated mature T cells but they lack expression of the T cell receptor (TCR) complex. We have made preparations of day 14/15 triple negative fetal thymocytes that exhibit the activated T lymphocyte markers CD25, intercellu...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191200/ https://www.ncbi.nlm.nih.gov/pubmed/8376926 |
Sumario: | Early in ontogeny thymocytes have a surface marker phenotype that resembles activated mature T cells but they lack expression of the T cell receptor (TCR) complex. We have made preparations of day 14/15 triple negative fetal thymocytes that exhibit the activated T lymphocyte markers CD25, intercellular adhesion molecule 1, Ly-6A/E, CD44, and heat stable antigen and are rapidly proliferating as evidenced by flow cytometric examination of BrdU incorporation. We found that binding activities of the gene regulators nuclear factor (NF)-kappa B, the NF-kappa B p50 homodimer complex, nuclear factor of activated T cells (NF-AT), oct-1, oct-2, activator protein 1 (AP-1), and serum response factor (SRF), are all present in these early thymocytes. Whereas the octamer factors and SRF persist during ontogeny, NF-kappa B, NF-AT, and AP-1 decrease and are undetectable in the adult thymus. Transfection of disaggregated thymocytes by electroporation or intact thymic lobes by gold-particle bombardment revealed that reporter constructs for NF-kappa B, NF-AT, AP-1, octamer factors and, to a small extent, the TCR-alpha enhancer were active in early thymocyte development. We rigorously eliminated the possibility that these transcriptional events were due to minor populations of TCR+ cells by showing that these reporter constructs were also active in recombinase activating gene (RAG)-/- thymocytes that are incapable of completing TCR gene rearrangement, and predominantly contain cells that have an activated phenotype. Thus, transcriptional events that are usually triggered by antigen stimulation in mature T cells take place early in thymic ontogeny in the absence of the TCR. Our analysis suggests that there are striking regulatory similarities but also important differences between the activation processes that take place in antigen-stimulated mature T cells and thymic progenitor cells. |
---|