Cargando…

Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation

Effective T cell immune responses require the molecular interplay between adhesive and signaling events mediated by the T cell receptor for antigen (TCR) and other cell surface coreceptor molecules. In this report, we have distinguished between the role of regulated adhesion and transmembrane signal...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191224/
https://www.ncbi.nlm.nih.gov/pubmed/7901319
_version_ 1782146954654908416
collection PubMed
description Effective T cell immune responses require the molecular interplay between adhesive and signaling events mediated by the T cell receptor for antigen (TCR) and other cell surface coreceptor molecules. In this report, we have distinguished between the role of regulated adhesion and transmembrane signaling in coreceptor function using the T cell glycoprotein CD2. By binding its ligands on antigen-presenting cell (APC), CD2 serves both to initiate signal transduction events and to promote cellular adhesion. Furthermore, the avidity of CD2 for one ligand, CD58 (LFA-3), is regulated by TCR signaling. We have expressed wild type CD2 and a series of mutated CD2 molecules in an antigen- specific murine T cell hybridoma. Structure-function studies using these stably transfected cell lines identify two structurally and functionally distinct regions of the 116 amino acid (aa) cytoplasmic domain. One region is required for CD2-mediated signal transduction, and a separate COOH-terminal 21 aa portion is required for CD2 activity regulation. Cell lines expressing CD2 molecules lacking the cytoplasmic segment required for CD2-initiated IL-2 production retain the ability to upregulate CD2 avidity. Conversely, cell lines expressing CD2 mutants lacking the cytoplasmic segment required for avidity regulation retain the ability to initiate CD2-specific signaling. In antigen- specific T cell responses, basal binding of CD2 to its ligands enhances antigen responsiveness only minimally, whereas regulated avidity and transmembrane signaling are both required for optimal coreceptor function. Taken together, these studies demonstrate the independent contributions of regulated adhesion and intracellular signaling in CD2 coreceptor function.
format Text
id pubmed-2191224
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21912242008-04-16 Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation J Exp Med Articles Effective T cell immune responses require the molecular interplay between adhesive and signaling events mediated by the T cell receptor for antigen (TCR) and other cell surface coreceptor molecules. In this report, we have distinguished between the role of regulated adhesion and transmembrane signaling in coreceptor function using the T cell glycoprotein CD2. By binding its ligands on antigen-presenting cell (APC), CD2 serves both to initiate signal transduction events and to promote cellular adhesion. Furthermore, the avidity of CD2 for one ligand, CD58 (LFA-3), is regulated by TCR signaling. We have expressed wild type CD2 and a series of mutated CD2 molecules in an antigen- specific murine T cell hybridoma. Structure-function studies using these stably transfected cell lines identify two structurally and functionally distinct regions of the 116 amino acid (aa) cytoplasmic domain. One region is required for CD2-mediated signal transduction, and a separate COOH-terminal 21 aa portion is required for CD2 activity regulation. Cell lines expressing CD2 molecules lacking the cytoplasmic segment required for CD2-initiated IL-2 production retain the ability to upregulate CD2 avidity. Conversely, cell lines expressing CD2 mutants lacking the cytoplasmic segment required for avidity regulation retain the ability to initiate CD2-specific signaling. In antigen- specific T cell responses, basal binding of CD2 to its ligands enhances antigen responsiveness only minimally, whereas regulated avidity and transmembrane signaling are both required for optimal coreceptor function. Taken together, these studies demonstrate the independent contributions of regulated adhesion and intracellular signaling in CD2 coreceptor function. The Rockefeller University Press 1993-11-01 /pmc/articles/PMC2191224/ /pubmed/7901319 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation
title Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation
title_full Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation
title_fullStr Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation
title_full_unstemmed Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation
title_short Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation
title_sort separable portions of the cd2 cytoplasmic domain involved in signaling and ligand avidity regulation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191224/
https://www.ncbi.nlm.nih.gov/pubmed/7901319