Cargando…

Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals

Allergen specific CD4+ T cell clones generated from allergic individuals have been shown to produce increased levels of the cytokine interleukin 4 (IL-4), compared to allergen specific clones generated from nonallergic individuals. This difference between CD4+ T cells from allergic and nonallergic i...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191292/
https://www.ncbi.nlm.nih.gov/pubmed/7902409
Descripción
Sumario:Allergen specific CD4+ T cell clones generated from allergic individuals have been shown to produce increased levels of the cytokine interleukin 4 (IL-4), compared to allergen specific clones generated from nonallergic individuals. This difference between CD4+ T cells from allergic and nonallergic individuals with regard to cytokine production in response to allergen is thought to be responsible for the development of allergic disease with increased IgE synthesis in atopic individuals. We examined the production of IL-4 in subjects with allergic rhinitis and in allergic individuals treated with allergen immunotherapy, a treatment which involves the subcutaneous administration of increasing doses of allergen and which is highly effective and beneficial for individuals with severe allergic rhinitis. We demonstrated that the quantity of IL-4 produced by allergen specific memory CD4+ T cells from allergic individuals could be considerably reduced by in vivo treatment with allergen (allergen immunotherapy). Immunotherapy reduced IL-4 production by allergen specific CD4+ T cells to levels observed with T cells from nonallergic subjects, or to levels induced with nonallergic antigens such as tetanus toxoid. In most cases the levels of IL-4 produced were inversely related to the length of time on immunotherapy. These observations indicate that immunotherapy accomplishes its clinical effects by reducing IL-4 synthesis in allergen specific CD4+ T cells. In addition, these observations indicate that the cytokine profiles of memory CD4+ T cells can indeed be altered by in vivo therapies. Thus, the cytokine profiles of memory CD4+ T cells are mutable, and are not fixed as had been suggested by studies of murine CD4+ memory T cells. Finally, treatment of allergic diseases with allergen immunotherapy may be a model for other diseases which may require therapies that alter inappropriate cytokine profiles of memory CD4+ T cells.