Cargando…

A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation

Vascular endothelium activated by endotoxin (lipopolysaccharide [LPS]) and cytokines plays an important role in organ inflammation and blood leukocyte recruitment observed during sepsis. Endothelial cells can be activated by LPS directly, after its interaction with LPS-binding protein and soluble CD...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191301/
https://www.ncbi.nlm.nih.gov/pubmed/7504060
_version_ 1782146972877062144
collection PubMed
description Vascular endothelium activated by endotoxin (lipopolysaccharide [LPS]) and cytokines plays an important role in organ inflammation and blood leukocyte recruitment observed during sepsis. Endothelial cells can be activated by LPS directly, after its interaction with LPS-binding protein and soluble CD14 in plasma. LPS-LPS-binding protein complexes in blood also interact with monocytes and neutrophils bearing glycosyl- phosphatidylinositol (GPI) anchored membrane CD14 (mCD14), promoting the release of cytokines such as tumor necrosis factor and interleukin 1 (IL-1). These molecules, in turn, have the capacity to activate endothelial cells providing an indirect pathway for LPS-dependent endothelial cell activation. In this work, we address the relative importance of the direct and the indirect pathway of in vitro LPS- induced human umbilical vein endothelial cell (HUVEC) activation. Substituting whole blood for plasma resulted in a 1,000-fold enhancement of HUVEC sensitivity to LPS. Both blood- and plasma- dependent enhanced activation of HUVEC were blocked with an anti-CD14 monoclonal antibody. Blood from patients with paroxysmal nocturnal hemoglobinuria, whose cells lack mCD14 and other GPI anchored proteins, was unable to enhance LPS activation of HUVEC above the level observed with plasma alone. IL-10, an inhibitor of monocyte release of cytokines, decreased the blood-dependent enhancement of HUVEC activation by LPS. Blood adapted to small doses of LPS was also less efficient than nonadapted blood in producing this enhancement. Addition of purified mononuclear cells to HUVEC or the transfer of plasma from whole blood incubated with LPS to HUVEC, duplicated the enhancement effect observed when whole blood was incubated with HUVEC. Taken together, these data suggest that the indirect pathway of LPS activation of endothelial cell is mediated by monocytes and mCD14 through the secretion of a soluble mediator(s). The indirect pathway is far more efficient than the direct, plasma-dependent pathway.
format Text
id pubmed-2191301
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21913012008-04-16 A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation J Exp Med Articles Vascular endothelium activated by endotoxin (lipopolysaccharide [LPS]) and cytokines plays an important role in organ inflammation and blood leukocyte recruitment observed during sepsis. Endothelial cells can be activated by LPS directly, after its interaction with LPS-binding protein and soluble CD14 in plasma. LPS-LPS-binding protein complexes in blood also interact with monocytes and neutrophils bearing glycosyl- phosphatidylinositol (GPI) anchored membrane CD14 (mCD14), promoting the release of cytokines such as tumor necrosis factor and interleukin 1 (IL-1). These molecules, in turn, have the capacity to activate endothelial cells providing an indirect pathway for LPS-dependent endothelial cell activation. In this work, we address the relative importance of the direct and the indirect pathway of in vitro LPS- induced human umbilical vein endothelial cell (HUVEC) activation. Substituting whole blood for plasma resulted in a 1,000-fold enhancement of HUVEC sensitivity to LPS. Both blood- and plasma- dependent enhanced activation of HUVEC were blocked with an anti-CD14 monoclonal antibody. Blood from patients with paroxysmal nocturnal hemoglobinuria, whose cells lack mCD14 and other GPI anchored proteins, was unable to enhance LPS activation of HUVEC above the level observed with plasma alone. IL-10, an inhibitor of monocyte release of cytokines, decreased the blood-dependent enhancement of HUVEC activation by LPS. Blood adapted to small doses of LPS was also less efficient than nonadapted blood in producing this enhancement. Addition of purified mononuclear cells to HUVEC or the transfer of plasma from whole blood incubated with LPS to HUVEC, duplicated the enhancement effect observed when whole blood was incubated with HUVEC. Taken together, these data suggest that the indirect pathway of LPS activation of endothelial cell is mediated by monocytes and mCD14 through the secretion of a soluble mediator(s). The indirect pathway is far more efficient than the direct, plasma-dependent pathway. The Rockefeller University Press 1993-12-01 /pmc/articles/PMC2191301/ /pubmed/7504060 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation
title A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation
title_full A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation
title_fullStr A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation
title_full_unstemmed A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation
title_short A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation
title_sort critical role for monocytes and cd14 in endotoxin-induced endothelial cell activation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191301/
https://www.ncbi.nlm.nih.gov/pubmed/7504060