Cargando…

Comparison of somatic mutation frequency among immunoglobulin genes

We analyzed the frequency of somatic mutation in immunoglobulin genes from hybridomas that secrete anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) monoclonal antibodies. A high frequency of mutation (3.3-4.4%) was observed in both the rearranged VH186.2 and V lambda 1 genes, indicating that somatic mutati...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191348/
https://www.ncbi.nlm.nih.gov/pubmed/8294856
Descripción
Sumario:We analyzed the frequency of somatic mutation in immunoglobulin genes from hybridomas that secrete anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) monoclonal antibodies. A high frequency of mutation (3.3-4.4%) was observed in both the rearranged VH186.2 and V lambda 1 genes, indicating that somatic mutation occurs with similar frequency in these genes in spite of the absence of an intron enhancer in lambda 1 chain genes. In contrast to the high frequency in J-C introns, only two nucleotide substitutions occurred at positions -462 and -555 in the 5' noncoding region in one of the lambda 1-chain genes and in none of the other three so far studied. Since a similar low frequency of somatic mutation was observed in the 5' noncoding region of inactive lambda 2- chain genes rendered inactive because of incorrect rearrangement, this region may not be a target or alternatively, may be protected from the mutator system. We observed a low frequency of nucleotide substitution in unrearranged V lambda 1 genes (approximately 1/15 that of rearranged genes). Together with previous results (Azuma T., N. Motoyama, L. Fields, and D. Loh, 1993. Int. Immunol. 5:121), these findings suggest that the 5' noncoding region, which contains the promoter element, provides a signal for the somatic mutator system and that rearrangement, which brings the promoter into close proximity to the enhancer element, should increase mutation efficiency.