Cargando…

Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation

Apoptosis is the predominant form of cell death observed in a variety of physiological and pathological conditions such as cancer involution, insect metamorphosis, the development of the immune and nervous systems, and embryogenesis. The typical nuclear changes taking place in apoptotic cells includ...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191369/
https://www.ncbi.nlm.nih.gov/pubmed/8294867
_version_ 1782146988820660224
collection PubMed
description Apoptosis is the predominant form of cell death observed in a variety of physiological and pathological conditions such as cancer involution, insect metamorphosis, the development of the immune and nervous systems, and embryogenesis. The typical nuclear changes taking place in apoptotic cells include extensive condensation of chromatin and internucleosomal DNA fragmentation into units of 200 base pairs. However, the mechanisms responsible for both chromatin condensation and DNA fragmentation have yet to be elucidated. In this study, micrococcal nuclease and the divalent cations, Ca2+ and Mg2+, were applied to isolated nuclei in an attempt to reconstitute in vitro the digestion of genomic DNA associated with apoptosis. Micrococcal nuclease was found to induce a typical pattern of DNA fragmentation, but did not give rise to chromatin condensation, whereas Ca2+/Mg2+ induced both chromatin condensation and DNA fragmentation in isolated mouse liver nuclei. When the endonuclease inhibitor ZnCl2 was used, the DNA fragmentation induced by Ca2+/Mg2+ in nuclei could be completely inhibited, but chromatin condensation still occurred. For comparison, intact liver cells were treated with valinomycin, a potassium ionophore, which gave rise to an atypical cell death, with chromatin condensation appearing without DNA fragmentation. Our results suggest that endonuclease activation in apoptosis is neither necessary nor sufficient to induce chromatin condensation, and that DNA fragmentation and chromatin condensation may be triggered through separate pathways during apoptosis.
format Text
id pubmed-2191369
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21913692008-04-16 Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation J Exp Med Articles Apoptosis is the predominant form of cell death observed in a variety of physiological and pathological conditions such as cancer involution, insect metamorphosis, the development of the immune and nervous systems, and embryogenesis. The typical nuclear changes taking place in apoptotic cells include extensive condensation of chromatin and internucleosomal DNA fragmentation into units of 200 base pairs. However, the mechanisms responsible for both chromatin condensation and DNA fragmentation have yet to be elucidated. In this study, micrococcal nuclease and the divalent cations, Ca2+ and Mg2+, were applied to isolated nuclei in an attempt to reconstitute in vitro the digestion of genomic DNA associated with apoptosis. Micrococcal nuclease was found to induce a typical pattern of DNA fragmentation, but did not give rise to chromatin condensation, whereas Ca2+/Mg2+ induced both chromatin condensation and DNA fragmentation in isolated mouse liver nuclei. When the endonuclease inhibitor ZnCl2 was used, the DNA fragmentation induced by Ca2+/Mg2+ in nuclei could be completely inhibited, but chromatin condensation still occurred. For comparison, intact liver cells were treated with valinomycin, a potassium ionophore, which gave rise to an atypical cell death, with chromatin condensation appearing without DNA fragmentation. Our results suggest that endonuclease activation in apoptosis is neither necessary nor sufficient to induce chromatin condensation, and that DNA fragmentation and chromatin condensation may be triggered through separate pathways during apoptosis. The Rockefeller University Press 1994-02-01 /pmc/articles/PMC2191369/ /pubmed/8294867 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation
title Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation
title_full Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation
title_fullStr Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation
title_full_unstemmed Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation
title_short Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation
title_sort separate metabolic pathways leading to dna fragmentation and apoptotic chromatin condensation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191369/
https://www.ncbi.nlm.nih.gov/pubmed/8294867