Cargando…

Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor

Keratinocyte growth factor (KGF), a recently discovered 18.9 kD member of the fibroblast growth factor family has been shown to selectively induce keratinocyte proliferation and differentiation in tissue culture. To explore its potential stimulating keratinocyte growth and differentiation in vivo, w...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191416/
https://www.ncbi.nlm.nih.gov/pubmed/7509362
_version_ 1782146999794008064
collection PubMed
description Keratinocyte growth factor (KGF), a recently discovered 18.9 kD member of the fibroblast growth factor family has been shown to selectively induce keratinocyte proliferation and differentiation in tissue culture. To explore its potential stimulating keratinocyte growth and differentiation in vivo, we analyzed for the influence of KGF on epithelial derived elements within a wound created through the cartilage on the rabbit ear. KGF accelerated reepithelialization (p = 0.004) and increased the thickness of the epithelium (p = 0.0005) when 4-40 micrograms/cm2 recombinant KGF was added at the time of wounding. The regenerating epidermis showed normal differentiation as detected by cytokeratin immunostaining. Remarkably, however, KGF stimulated proliferation and differentiation of early progenitor cells within hair follicles and sebaceous glands in the wound bed and adjacent dermis. There was a transient but highly significant increase in specific labeling of cycling cells in both basal and suprabasal layers that extended into the spinous layer of the regenerating epidermis. As an indication of specificity, the inflammatory cells and fibroblasts within the wound were not influenced by KGF. The results indicate that KGF is unique in its ability to accelerate reepithelialization and dermal regeneration by targeting multiple epithelial elements within the skin. These results suggest that KGF may induce specific epithelial progenitor cell lineages within the skin to proliferate and differentiate, and thus may be a critical determinant of regeneration of skin. Furthermore, these findings illustrate the potential capacity of this system to analyze epithelial differentiation programs and disorders of epidermis, dermal glandular elements, and hair follicles.
format Text
id pubmed-2191416
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21914162008-04-16 Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor J Exp Med Articles Keratinocyte growth factor (KGF), a recently discovered 18.9 kD member of the fibroblast growth factor family has been shown to selectively induce keratinocyte proliferation and differentiation in tissue culture. To explore its potential stimulating keratinocyte growth and differentiation in vivo, we analyzed for the influence of KGF on epithelial derived elements within a wound created through the cartilage on the rabbit ear. KGF accelerated reepithelialization (p = 0.004) and increased the thickness of the epithelium (p = 0.0005) when 4-40 micrograms/cm2 recombinant KGF was added at the time of wounding. The regenerating epidermis showed normal differentiation as detected by cytokeratin immunostaining. Remarkably, however, KGF stimulated proliferation and differentiation of early progenitor cells within hair follicles and sebaceous glands in the wound bed and adjacent dermis. There was a transient but highly significant increase in specific labeling of cycling cells in both basal and suprabasal layers that extended into the spinous layer of the regenerating epidermis. As an indication of specificity, the inflammatory cells and fibroblasts within the wound were not influenced by KGF. The results indicate that KGF is unique in its ability to accelerate reepithelialization and dermal regeneration by targeting multiple epithelial elements within the skin. These results suggest that KGF may induce specific epithelial progenitor cell lineages within the skin to proliferate and differentiate, and thus may be a critical determinant of regeneration of skin. Furthermore, these findings illustrate the potential capacity of this system to analyze epithelial differentiation programs and disorders of epidermis, dermal glandular elements, and hair follicles. The Rockefeller University Press 1994-03-01 /pmc/articles/PMC2191416/ /pubmed/7509362 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
title Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
title_full Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
title_fullStr Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
title_full_unstemmed Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
title_short Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
title_sort stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191416/
https://www.ncbi.nlm.nih.gov/pubmed/7509362