Cargando…

Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation

Cells of monocytic lineage can initiate extravascular fibrin deposition via expression of blood coagulation mediators. This report is about experiments on three mechanisms with the potential to modulate monocyte- initiated coagulation. Monocyte procoagulant activity was examined as a function of lip...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191520/
https://www.ncbi.nlm.nih.gov/pubmed/8195712
_version_ 1782147024139845632
collection PubMed
description Cells of monocytic lineage can initiate extravascular fibrin deposition via expression of blood coagulation mediators. This report is about experiments on three mechanisms with the potential to modulate monocyte- initiated coagulation. Monocyte procoagulant activity was examined as a function of lipid cofactor, protein cofactor, and specific inhibitor expression during short-term culture in vitro. Lipid cofactor activity was measured as the initial rate of factor X activation by intrinsic- pathway components, the assembly of which depends on this cofactor. Lipid cofactor activity levels changed by < 30% during 48-h culture. Protein cofactor, i.e., tissue factor (TF) antigen was measured by enzyme immunoassay. It increased from 461 pg/ml to a maximum value of 3,550 pg/ml at 24 h and remained at 70% of this value. Specific TF activity, measured as factor VII-dependent factor X activation rate, decreased from 54 to 18 nM FXa/min between 24 and 48 h. TF activity did not correlate well with either lipid cofactor or TF protein levels. In contrast, the decrease in TF activity coincided in time with maximal expression of tissue factor pathway inhibitor (TFPI) mRNA, which was determined using reverse transcriptase polymerase chain reaction (RT- PCR), and with maximal TFPI protein levels measured by immunoassay. The number of mRNA copies coding for TFPI and TF in freshly isolated blood monocytes were 46 and 20 copies/cells, respectively. These values increased to 220 and 63 copies/cell during short-term cell culture in the presence of endotoxin. Results demonstrate concomitant expression by monocytes of genes coding for both the essential protein cofactor and the specific inhibitor of the extrinsic coagulation pathway. Together with functional and antigenic analyses, they also imply that the initiation of blood clotting by extravascular monocyte/macrophages can be modulated locally by TFPI independently of plasma sources of the inhibitor.
format Text
id pubmed-2191520
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21915202008-04-16 Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation J Exp Med Articles Cells of monocytic lineage can initiate extravascular fibrin deposition via expression of blood coagulation mediators. This report is about experiments on three mechanisms with the potential to modulate monocyte- initiated coagulation. Monocyte procoagulant activity was examined as a function of lipid cofactor, protein cofactor, and specific inhibitor expression during short-term culture in vitro. Lipid cofactor activity was measured as the initial rate of factor X activation by intrinsic- pathway components, the assembly of which depends on this cofactor. Lipid cofactor activity levels changed by < 30% during 48-h culture. Protein cofactor, i.e., tissue factor (TF) antigen was measured by enzyme immunoassay. It increased from 461 pg/ml to a maximum value of 3,550 pg/ml at 24 h and remained at 70% of this value. Specific TF activity, measured as factor VII-dependent factor X activation rate, decreased from 54 to 18 nM FXa/min between 24 and 48 h. TF activity did not correlate well with either lipid cofactor or TF protein levels. In contrast, the decrease in TF activity coincided in time with maximal expression of tissue factor pathway inhibitor (TFPI) mRNA, which was determined using reverse transcriptase polymerase chain reaction (RT- PCR), and with maximal TFPI protein levels measured by immunoassay. The number of mRNA copies coding for TFPI and TF in freshly isolated blood monocytes were 46 and 20 copies/cells, respectively. These values increased to 220 and 63 copies/cell during short-term cell culture in the presence of endotoxin. Results demonstrate concomitant expression by monocytes of genes coding for both the essential protein cofactor and the specific inhibitor of the extrinsic coagulation pathway. Together with functional and antigenic analyses, they also imply that the initiation of blood clotting by extravascular monocyte/macrophages can be modulated locally by TFPI independently of plasma sources of the inhibitor. The Rockefeller University Press 1994-06-01 /pmc/articles/PMC2191520/ /pubmed/8195712 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation
title Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation
title_full Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation
title_fullStr Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation
title_full_unstemmed Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation
title_short Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation
title_sort simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. a potential mechanism for localized control of blood coagulation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191520/
https://www.ncbi.nlm.nih.gov/pubmed/8195712