Cargando…

Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies

Molecular mimicry between viral antigens and host proteins was often suggested to be involved in induction of autoimmune diseases. In type 1 diabetes where pancreatic beta cells are destroyed by autoimmune phenomena, a linear sequence homology between a major autoantigen, glutamate decarboxylase (GA...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191584/
https://www.ncbi.nlm.nih.gov/pubmed/7913951
_version_ 1782147039230951424
collection PubMed
description Molecular mimicry between viral antigens and host proteins was often suggested to be involved in induction of autoimmune diseases. In type 1 diabetes where pancreatic beta cells are destroyed by autoimmune phenomena, a linear sequence homology between a major autoantigen, glutamate decarboxylase (GAD), and the 2C protein of coxsackie B4 was identified. In addition, a sequence homology between GAD and the mycobacterial heat shock protein 60 was described and the suggestions were made that molecular mimicry between GAD, coxsackievirus B4-2C protein, and/or heat shock protein 60 (hsp60) may be actively involved in an autoimmune reaction towards the pancreatic beta-cells. Our group was the first to isolate human monoclonal autoantibodies to GAD (MICA 1- 6) from a patient with newly diagnosed type 1 diabetes. The MICA allowed a detailed characterization of the diabetes associated self- epitopes in GAD and represent a set of GAD autoantibodies present in sera from patients with type 1 diabetes. Using deletion mutants of GAD we demonstrated that the regions of GAD covering the homology sequences to coxsackievirus B4 and to the hsp60 were absolutely required for binding of the MICA to GAD. We now designed an antibody-based analysis to ask whether molecular mimicry between GAD and coxsackie B4-2C or hsp60 is relevant in type 1 diabetes. Since part of the MICA recognize conformational epitopes, they allow to test for conformational molecular mimicry in viruses that have been incriminated in the development of type 1 diabetes. Our data reveal no crossreactivity between the diabetes associated GAD epitopes defined by the MICA and hsp60, rubellavirus, cytomegalovirus, and coxsackie B1-B6 virus antigens. Neither coxsackie B4-specific antibodies in sera from normal individuals nor GAD-positive sera from patients with type 1 diabetes indicated a crossreactivity between coxsackie B4-2C and GAD. Although the regions in GAD homologous to coxsackie B4-2C and hsp60 represented parts of GAD indispensible for binding of diabetes associated autoantibodies they did not mediate a crossreactivity of autoantibodies between GAD and these two proteins. No evidence for molecular mimicry between GAD and a whole panel of foreign antigens was detected by autoantibodies in type 1 diabetes.
format Text
id pubmed-2191584
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21915842008-04-16 Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies J Exp Med Articles Molecular mimicry between viral antigens and host proteins was often suggested to be involved in induction of autoimmune diseases. In type 1 diabetes where pancreatic beta cells are destroyed by autoimmune phenomena, a linear sequence homology between a major autoantigen, glutamate decarboxylase (GAD), and the 2C protein of coxsackie B4 was identified. In addition, a sequence homology between GAD and the mycobacterial heat shock protein 60 was described and the suggestions were made that molecular mimicry between GAD, coxsackievirus B4-2C protein, and/or heat shock protein 60 (hsp60) may be actively involved in an autoimmune reaction towards the pancreatic beta-cells. Our group was the first to isolate human monoclonal autoantibodies to GAD (MICA 1- 6) from a patient with newly diagnosed type 1 diabetes. The MICA allowed a detailed characterization of the diabetes associated self- epitopes in GAD and represent a set of GAD autoantibodies present in sera from patients with type 1 diabetes. Using deletion mutants of GAD we demonstrated that the regions of GAD covering the homology sequences to coxsackievirus B4 and to the hsp60 were absolutely required for binding of the MICA to GAD. We now designed an antibody-based analysis to ask whether molecular mimicry between GAD and coxsackie B4-2C or hsp60 is relevant in type 1 diabetes. Since part of the MICA recognize conformational epitopes, they allow to test for conformational molecular mimicry in viruses that have been incriminated in the development of type 1 diabetes. Our data reveal no crossreactivity between the diabetes associated GAD epitopes defined by the MICA and hsp60, rubellavirus, cytomegalovirus, and coxsackie B1-B6 virus antigens. Neither coxsackie B4-specific antibodies in sera from normal individuals nor GAD-positive sera from patients with type 1 diabetes indicated a crossreactivity between coxsackie B4-2C and GAD. Although the regions in GAD homologous to coxsackie B4-2C and hsp60 represented parts of GAD indispensible for binding of diabetes associated autoantibodies they did not mediate a crossreactivity of autoantibodies between GAD and these two proteins. No evidence for molecular mimicry between GAD and a whole panel of foreign antigens was detected by autoantibodies in type 1 diabetes. The Rockefeller University Press 1994-08-01 /pmc/articles/PMC2191584/ /pubmed/7913951 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
title Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
title_full Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
title_fullStr Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
title_full_unstemmed Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
title_short Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
title_sort sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie b4-2c protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191584/
https://www.ncbi.nlm.nih.gov/pubmed/7913951