Cargando…

Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin

Transforming growth factor beta 1 (TGF-beta 1) and TGF-beta 2 can reversibly inhibit the proliferation of hematopoietic progenitor cells in vivo, leading us to hypothesize that such quiescent progenitors might be more resistant to high doses of cell cycle active chemotherapeutic drugs, thereby allow...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191629/
https://www.ncbi.nlm.nih.gov/pubmed/8064224
_version_ 1782147049733488640
collection PubMed
description Transforming growth factor beta 1 (TGF-beta 1) and TGF-beta 2 can reversibly inhibit the proliferation of hematopoietic progenitor cells in vivo, leading us to hypothesize that such quiescent progenitors might be more resistant to high doses of cell cycle active chemotherapeutic drugs, thereby allowing dose intensification of such agents. Initial studies showed that whereas administration of TGF-beta 1 or TGF-beta 2 did not prevent death in normal mice treated with high doses of 5-fluorouracil (5-FU), those mice that received TGF-beta 2 did exhibit the beginning of a hematologic recovery by day 11 after administration of 5-FU, and were preferentially rescued by a suboptimal number of transplanted bone marrow cells. Subsequently, it was found that the administration of TGF-beta 2 protected recovering progenitor cells from high concentrations of 5-FU in vitro. This protection coincided with the finding that significantly more progenitors for colony-forming unit-culture (CFU-c) and CFU-granulocyte, erythroid, megakaryocyte, macrophage (GEMM) were removed from S-phase by TGF-beta in mice undergoing hematopoietic recovery than in normal mice. Further studies showed that the administration of TGF-beta protected up to 90% of these mice undergoing hematologic recovery from a rechallenge in vivo with high dose 5-FU, while survival in mice not given TGF-beta was < 40%. Pretreatment of mice with TGF-beta 1 or TGF-beta 2 also protected 70-80% of mice from lethal doses of the noncycle active chemotherapeutic drug, doxorubicin hydrochloride (DXR). These results demonstrate that TGF-beta can protect mice from both the lethal hematopoietic toxicity of 5-FU, as well as the nonhematopoietic toxicity of DXR. This report thus shows that a negative regulator of hematopoiesis can be successfully used systemically to mediate chemoprotection in vivo.
format Text
id pubmed-2191629
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21916292008-04-16 Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin J Exp Med Articles Transforming growth factor beta 1 (TGF-beta 1) and TGF-beta 2 can reversibly inhibit the proliferation of hematopoietic progenitor cells in vivo, leading us to hypothesize that such quiescent progenitors might be more resistant to high doses of cell cycle active chemotherapeutic drugs, thereby allowing dose intensification of such agents. Initial studies showed that whereas administration of TGF-beta 1 or TGF-beta 2 did not prevent death in normal mice treated with high doses of 5-fluorouracil (5-FU), those mice that received TGF-beta 2 did exhibit the beginning of a hematologic recovery by day 11 after administration of 5-FU, and were preferentially rescued by a suboptimal number of transplanted bone marrow cells. Subsequently, it was found that the administration of TGF-beta 2 protected recovering progenitor cells from high concentrations of 5-FU in vitro. This protection coincided with the finding that significantly more progenitors for colony-forming unit-culture (CFU-c) and CFU-granulocyte, erythroid, megakaryocyte, macrophage (GEMM) were removed from S-phase by TGF-beta in mice undergoing hematopoietic recovery than in normal mice. Further studies showed that the administration of TGF-beta protected up to 90% of these mice undergoing hematologic recovery from a rechallenge in vivo with high dose 5-FU, while survival in mice not given TGF-beta was < 40%. Pretreatment of mice with TGF-beta 1 or TGF-beta 2 also protected 70-80% of mice from lethal doses of the noncycle active chemotherapeutic drug, doxorubicin hydrochloride (DXR). These results demonstrate that TGF-beta can protect mice from both the lethal hematopoietic toxicity of 5-FU, as well as the nonhematopoietic toxicity of DXR. This report thus shows that a negative regulator of hematopoiesis can be successfully used systemically to mediate chemoprotection in vivo. The Rockefeller University Press 1994-09-01 /pmc/articles/PMC2191629/ /pubmed/8064224 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
title Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
title_full Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
title_fullStr Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
title_full_unstemmed Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
title_short Recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
title_sort recombinant transforming growth factor beta 1 and beta 2 protect mice from acutely lethal doses of 5-fluorouracil and doxorubicin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191629/
https://www.ncbi.nlm.nih.gov/pubmed/8064224