Cargando…
Apoptosis is regulated by the rate of glucose transport in an interleukin 3 dependent cell line
In the absence of a survival stimulus, the interleukin 3 (IL-3)- dependent IC.DP cell line undergoes a process termed programmed cell death or apoptosis. Survival can be induced by IL-3, which can also stimulate proliferation of IC.DP cells. IC.DP cells have been stably transfected with the p160v-ab...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191668/ https://www.ncbi.nlm.nih.gov/pubmed/8064240 |
Sumario: | In the absence of a survival stimulus, the interleukin 3 (IL-3)- dependent IC.DP cell line undergoes a process termed programmed cell death or apoptosis. Survival can be induced by IL-3, which can also stimulate proliferation of IC.DP cells. IC.DP cells have been stably transfected with the p160v-abl protein tyrosine kinase, activation of the kinase at the permissive temperature permits cell survival in the absence of IL-3 by suppression of apoptosis, although the growth factor is still required for proliferation. Both IL-3 and activation of the v- ABL tyrosine kinase stimulated glucose transport, which may in part be due to a translocation of transporters to the cell surface. Inhibition of glucose uptake markedly increased the rate of apoptosis in these cells, an effect that could be reversed by the provision of alternative energy sources such as glutamine. Growth factor- or oncogene-mediated increases in glucose uptake may therefore represent an important regulatory point in the suppression of apoptosis. |
---|