Cargando…

Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene

Insulin-dependent diabetes mellitus (IDDM) in NOD/Lt mice represents a complex polygenic disease. NOR/Lt is a recombinant congenic strain (RCS) in which limited regions of the NOD/Lt genome have been replaced by genome from the C57BL/KsJ strain. NOR mice are insulitis resistant and diabetes free des...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191696/
https://www.ncbi.nlm.nih.gov/pubmed/7931087
_version_ 1782147065451642880
collection PubMed
description Insulin-dependent diabetes mellitus (IDDM) in NOD/Lt mice represents a complex polygenic disease. NOR/Lt is a recombinant congenic strain (RCS) in which limited regions of the NOD/Lt genome have been replaced by genome from the C57BL/KsJ strain. NOR mice are insulitis resistant and diabetes free despite genetic identity with NOD at numerous chromosomal regions containing previously described insulin-dependent diabetes (Idd) genes, including the strongly diabetogenic H2g7 major histocompatibility complex (MHC) haplotype. The present study revealed BKs-derived genome on segments of chromosomes (Chr) 1, 2, 4, 5, 7, 11, 12, and 18, approximating 11.6% of the total NOR genome analyzed. (NOD x NOR)F2 segregation analysis was employed to identify chromosomal regions in NOR containing Idd resistance alleles. IDDM developed in 33% (10/30) of F1 females, and 29.3% (36/123) of F2 females aged to 1 yr. A previously unrecognized diabetes resistance locus (designated Idd13r) strongly protective in homozygous state was identified on NOR Chr 2 in linkage with the Il1 alpha structural gene. The existence of this locus was confirmed by construction of a NOD stock congenic for NOR-derived markers on Chr 2. Our analysis shows the utility of RCS and congenic stocks for the identification and isolation of non-MHC genes with strong antidiabetogenic functions.
format Text
id pubmed-2191696
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21916962008-04-16 Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene J Exp Med Articles Insulin-dependent diabetes mellitus (IDDM) in NOD/Lt mice represents a complex polygenic disease. NOR/Lt is a recombinant congenic strain (RCS) in which limited regions of the NOD/Lt genome have been replaced by genome from the C57BL/KsJ strain. NOR mice are insulitis resistant and diabetes free despite genetic identity with NOD at numerous chromosomal regions containing previously described insulin-dependent diabetes (Idd) genes, including the strongly diabetogenic H2g7 major histocompatibility complex (MHC) haplotype. The present study revealed BKs-derived genome on segments of chromosomes (Chr) 1, 2, 4, 5, 7, 11, 12, and 18, approximating 11.6% of the total NOR genome analyzed. (NOD x NOR)F2 segregation analysis was employed to identify chromosomal regions in NOR containing Idd resistance alleles. IDDM developed in 33% (10/30) of F1 females, and 29.3% (36/123) of F2 females aged to 1 yr. A previously unrecognized diabetes resistance locus (designated Idd13r) strongly protective in homozygous state was identified on NOR Chr 2 in linkage with the Il1 alpha structural gene. The existence of this locus was confirmed by construction of a NOD stock congenic for NOR-derived markers on Chr 2. Our analysis shows the utility of RCS and congenic stocks for the identification and isolation of non-MHC genes with strong antidiabetogenic functions. The Rockefeller University Press 1994-10-01 /pmc/articles/PMC2191696/ /pubmed/7931087 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
title Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
title_full Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
title_fullStr Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
title_full_unstemmed Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
title_short Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene
title_sort use of recombinant congenic and congenic strains of nod mice to identify a new insulin-dependent diabetes resistance gene
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191696/
https://www.ncbi.nlm.nih.gov/pubmed/7931087