Cargando…

Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine

Immunoglobulin (Ig) E is the principal Ig involved in immediate hypersensitivities and chronic allergic diseases such as asthma. Helminths are the most potent infectious agents known for their capacity to stimulate IgE production during the course of infection. In rats, the nematode Trichinella spir...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191712/
https://www.ncbi.nlm.nih.gov/pubmed/7964461
_version_ 1782147069176184832
collection PubMed
description Immunoglobulin (Ig) E is the principal Ig involved in immediate hypersensitivities and chronic allergic diseases such as asthma. Helminths are the most potent infectious agents known for their capacity to stimulate IgE production during the course of infection. In rats, the nematode Trichinella spiralis typically elicits a strong parasite-specific IgE response during infection, and this IgE antibody has been shown to be protective against the parasite in passive transfer experiments. The study reported here analyzed the fate of 125I- labeled myeloma IgE (1R162) in normal and T. spiralis-infected rats after intravenous injection. T. spiralis infection induced a capacity for specific binding to the gut wall of 125I-IgE rather than 125I-IgG1, as well as the transport of IgE, but not IgG1, into the gut lumen. Peak intestinal uptake and transport of 125I-IgE occurred during the first and second weeks after injection but was not elevated in the fourth week, that is, after intestinal adult worms had been expelled. Neither 125I-IgE uptake in the gut wall nor transport to the lumen could be ascribed to tissue damage or vascular leakage. Luminal transport occurred in the small intestine and not the liver, which only transports low molecular weight degraded 125I-IgE. Calculations based on the amount of intact IgE in the lumen suggest that, in a 24-h period, up to 20% of injected 125I-IgE can be transported to the gut lumen during the peak transport period, between 6 and 14 d after infection. The intestinal IgE binding and transport response can be adoptively transferred with T. spiralis immune CD4+ OX22- (CD45RC-) lymphocytes, which are protective, but not the nonprotective sister population CD4+ OX22+ (CD45RC+) of lymphocytes isolated simultaneously from thoracic duct lymph of infected rats. The intravenous infusion of recombinant rat interleukin 4 also elicited significant intestinal uptake of 125I-IgE. We also present evidence for the presence of CD23 on rat intraepithelial lymphocytes. These data provide evidence for a novel, inducible, intestine-specific IgE uptake and transport mechanism.
format Text
id pubmed-2191712
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21917122008-04-16 Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine J Exp Med Articles Immunoglobulin (Ig) E is the principal Ig involved in immediate hypersensitivities and chronic allergic diseases such as asthma. Helminths are the most potent infectious agents known for their capacity to stimulate IgE production during the course of infection. In rats, the nematode Trichinella spiralis typically elicits a strong parasite-specific IgE response during infection, and this IgE antibody has been shown to be protective against the parasite in passive transfer experiments. The study reported here analyzed the fate of 125I- labeled myeloma IgE (1R162) in normal and T. spiralis-infected rats after intravenous injection. T. spiralis infection induced a capacity for specific binding to the gut wall of 125I-IgE rather than 125I-IgG1, as well as the transport of IgE, but not IgG1, into the gut lumen. Peak intestinal uptake and transport of 125I-IgE occurred during the first and second weeks after injection but was not elevated in the fourth week, that is, after intestinal adult worms had been expelled. Neither 125I-IgE uptake in the gut wall nor transport to the lumen could be ascribed to tissue damage or vascular leakage. Luminal transport occurred in the small intestine and not the liver, which only transports low molecular weight degraded 125I-IgE. Calculations based on the amount of intact IgE in the lumen suggest that, in a 24-h period, up to 20% of injected 125I-IgE can be transported to the gut lumen during the peak transport period, between 6 and 14 d after infection. The intestinal IgE binding and transport response can be adoptively transferred with T. spiralis immune CD4+ OX22- (CD45RC-) lymphocytes, which are protective, but not the nonprotective sister population CD4+ OX22+ (CD45RC+) of lymphocytes isolated simultaneously from thoracic duct lymph of infected rats. The intravenous infusion of recombinant rat interleukin 4 also elicited significant intestinal uptake of 125I-IgE. We also present evidence for the presence of CD23 on rat intraepithelial lymphocytes. These data provide evidence for a novel, inducible, intestine-specific IgE uptake and transport mechanism. The Rockefeller University Press 1994-11-01 /pmc/articles/PMC2191712/ /pubmed/7964461 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine
title Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine
title_full Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine
title_fullStr Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine
title_full_unstemmed Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine
title_short Evidence for an interleukin 4-inducible immunoglobulin E uptake and transport mechanism in the intestine
title_sort evidence for an interleukin 4-inducible immunoglobulin e uptake and transport mechanism in the intestine
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191712/
https://www.ncbi.nlm.nih.gov/pubmed/7964461