Cargando…

Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression

Natural resistance to infection with unrelated intracellular parasites such as Mycobacteria, Salmonella, and Leishmania is controlled in the mouse by a single gene on chromosome 1, designated Bcg, Ity, or Lsh. A candidate gene for Bcg, designated natural resistance-associated macrophage protein (Nra...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191750/
https://www.ncbi.nlm.nih.gov/pubmed/7964458
_version_ 1782147078121586688
collection PubMed
description Natural resistance to infection with unrelated intracellular parasites such as Mycobacteria, Salmonella, and Leishmania is controlled in the mouse by a single gene on chromosome 1, designated Bcg, Ity, or Lsh. A candidate gene for Bcg, designated natural resistance-associated macrophage protein (Nramp), has been isolated and shown to encode a novel macrophage-specific membrane protein, which is altered in susceptible animals. We have cloned and characterized cDNA clones corresponding to the human NRAMP gene. Nucleotide and predicted amino acid sequence analyses indicate that the human NRAMP polypeptide encodes a 550-amino acid residue membrane protein with 10-12 putative transmembrane domains, two N-linked glycosylation sites, and an evolutionary conserved consensus transport motif. Identification of genomic clones corresponding to human NRAMP indicates that the gene maps to chromosome 2q35 within a group of syntenic loci conserved with proximal mouse 1. The gene is composed of at least 15 exons, with several exons encoding discrete predicted structural domains of the protein. These studies have also identified an alternatively spliced exon encoded by an Alu element present within intron 4. Although this novel exon was found expressed in vivo, it would introduce a termination codon in the downstream exon V, resulting in a severely truncated protein. Northern blot analyses indicate that NRAMP mRNA expression is tightly controlled in a tissue-specific fashion, with the highest sites of expression being peripheral blood leukocytes, lungs, and spleen. Additional RNA expression studies in cultured cells identified the macrophage as a site of expression of human NRAMP and indicated that increased expression was correlated with an advanced state of differentiation of this lineage.
format Text
id pubmed-2191750
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21917502008-04-16 Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression J Exp Med Articles Natural resistance to infection with unrelated intracellular parasites such as Mycobacteria, Salmonella, and Leishmania is controlled in the mouse by a single gene on chromosome 1, designated Bcg, Ity, or Lsh. A candidate gene for Bcg, designated natural resistance-associated macrophage protein (Nramp), has been isolated and shown to encode a novel macrophage-specific membrane protein, which is altered in susceptible animals. We have cloned and characterized cDNA clones corresponding to the human NRAMP gene. Nucleotide and predicted amino acid sequence analyses indicate that the human NRAMP polypeptide encodes a 550-amino acid residue membrane protein with 10-12 putative transmembrane domains, two N-linked glycosylation sites, and an evolutionary conserved consensus transport motif. Identification of genomic clones corresponding to human NRAMP indicates that the gene maps to chromosome 2q35 within a group of syntenic loci conserved with proximal mouse 1. The gene is composed of at least 15 exons, with several exons encoding discrete predicted structural domains of the protein. These studies have also identified an alternatively spliced exon encoded by an Alu element present within intron 4. Although this novel exon was found expressed in vivo, it would introduce a termination codon in the downstream exon V, resulting in a severely truncated protein. Northern blot analyses indicate that NRAMP mRNA expression is tightly controlled in a tissue-specific fashion, with the highest sites of expression being peripheral blood leukocytes, lungs, and spleen. Additional RNA expression studies in cultured cells identified the macrophage as a site of expression of human NRAMP and indicated that increased expression was correlated with an advanced state of differentiation of this lineage. The Rockefeller University Press 1994-11-01 /pmc/articles/PMC2191750/ /pubmed/7964458 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression
title Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression
title_full Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression
title_fullStr Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression
title_full_unstemmed Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression
title_short Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression
title_sort human natural resistance-associated macrophage protein: cdna cloning, chromosomal mapping, genomic organization, and tissue-specific expression
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191750/
https://www.ncbi.nlm.nih.gov/pubmed/7964458