Cargando…

Functional Myc-Max heterodimer is required for activation-induced apoptosis in T cell hybridomas

T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and this is likely to represent comparable events related to tolerance induction in immature and mature T cells in vivo. Previous studies using antisense oligonucleotides implicated the c-Myc protein in the phenomeno...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191802/
https://www.ncbi.nlm.nih.gov/pubmed/7964516
Descripción
Sumario:T cell hybridomas respond to activation signals by undergoing apoptotic cell death, and this is likely to represent comparable events related to tolerance induction in immature and mature T cells in vivo. Previous studies using antisense oligonucleotides implicated the c-Myc protein in the phenomenon of activation-induced apoptosis. This role for c-Myc in apoptosis is now confirmed in studies using a dominant negative form of its heterodimeric binding partner, Max, which we show here inhibits activation-induced apoptosis. Further, coexpression of a reciprocally mutant Myc protein capable of forming functional heterodimers with the mutant Max can compensate for the dominant negative activity and restore activation-induced apoptosis. These results imply that Myc promotes activation-induced apoptosis by obligatory heterodimerization with Max, and therefore, by regulating gene transcription.