Cargando…

Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms

Lymphocytes continuously migrate throughout the body in search of antigens. Virgin lymphocytes recirculate freely between the blood and different lymphatic organs, whereas immunoblasts extravasate preferentially into sites similar to those where they initially responded to antigen. Tissue-specific e...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191840/
https://www.ncbi.nlm.nih.gov/pubmed/7528765
_version_ 1782147099407679488
collection PubMed
description Lymphocytes continuously migrate throughout the body in search of antigens. Virgin lymphocytes recirculate freely between the blood and different lymphatic organs, whereas immunoblasts extravasate preferentially into sites similar to those where they initially responded to antigen. Tissue-specific extravasation of lymphocytes is largely controlled by distinct lymphocyte surface receptors that mediate lymphocyte binding to high endothelial venules (HEV). In the present study, the molecular mechanisms determining the specificity of human mucosal (lamina propria) lymphocyte binding to different endothelial recognition systems were analyzed. Mucosal immunoblasts adhered five times better than small mucosal lymphocytes to mucosal HEV. Importantly, mucosal immunoblasts also bound to synovial HEV almost as efficiently as to mucosal HEV, but they did not adhere to peripheral lymph node HEV. To study the impact of different homing- associated molecules in this dual endothelial binding, we used a gut- derived T cell line and freshly isolated mucosal immunoblasts. Both cell types expressed integrins alpha 4, beta 1, beta 7, and lymphocyte function associated antigen 1 (LFA-1), and were CD44 positive, but practically L-selectin negative. Binding of mucosal immunoblasts to mucosal HEV was almost completely abolished by pretreatment with anti- beta 7 monoclonal antibodies, but it was independent of alpha 4/beta 1 function. In contrast, alpha 4/beta 1 partially mediated immunoblast adherence to synovial HEV, whereas alpha 4/beta 7 had only a minor role in adherence of blasts at this site. CD44 and LFA-1 contributed to HEV- binding both in mucosa and synovium. Taken together, this is the first report that demonstrates a critical role for alpha 4/beta 7 in the binding of gut lymphocytes to mucosal venules in humans. Moreover, a hitherto unknown interaction between mucosal effector cells and synovial endothelial cells was shown to be only partially mediated by the currently known homing receptors. The dual endothelial binding capacity of mucosal blasts may help to explain the pathogenesis of reactive arthritis not uncommonly associated with inflammatory and infectious bowel disease.
format Text
id pubmed-2191840
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21918402008-04-16 Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms J Exp Med Articles Lymphocytes continuously migrate throughout the body in search of antigens. Virgin lymphocytes recirculate freely between the blood and different lymphatic organs, whereas immunoblasts extravasate preferentially into sites similar to those where they initially responded to antigen. Tissue-specific extravasation of lymphocytes is largely controlled by distinct lymphocyte surface receptors that mediate lymphocyte binding to high endothelial venules (HEV). In the present study, the molecular mechanisms determining the specificity of human mucosal (lamina propria) lymphocyte binding to different endothelial recognition systems were analyzed. Mucosal immunoblasts adhered five times better than small mucosal lymphocytes to mucosal HEV. Importantly, mucosal immunoblasts also bound to synovial HEV almost as efficiently as to mucosal HEV, but they did not adhere to peripheral lymph node HEV. To study the impact of different homing- associated molecules in this dual endothelial binding, we used a gut- derived T cell line and freshly isolated mucosal immunoblasts. Both cell types expressed integrins alpha 4, beta 1, beta 7, and lymphocyte function associated antigen 1 (LFA-1), and were CD44 positive, but practically L-selectin negative. Binding of mucosal immunoblasts to mucosal HEV was almost completely abolished by pretreatment with anti- beta 7 monoclonal antibodies, but it was independent of alpha 4/beta 1 function. In contrast, alpha 4/beta 1 partially mediated immunoblast adherence to synovial HEV, whereas alpha 4/beta 7 had only a minor role in adherence of blasts at this site. CD44 and LFA-1 contributed to HEV- binding both in mucosa and synovium. Taken together, this is the first report that demonstrates a critical role for alpha 4/beta 7 in the binding of gut lymphocytes to mucosal venules in humans. Moreover, a hitherto unknown interaction between mucosal effector cells and synovial endothelial cells was shown to be only partially mediated by the currently known homing receptors. The dual endothelial binding capacity of mucosal blasts may help to explain the pathogenesis of reactive arthritis not uncommonly associated with inflammatory and infectious bowel disease. The Rockefeller University Press 1995-01-01 /pmc/articles/PMC2191840/ /pubmed/7528765 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
title Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
title_full Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
title_fullStr Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
title_full_unstemmed Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
title_short Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
title_sort dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191840/
https://www.ncbi.nlm.nih.gov/pubmed/7528765