Cargando…

Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice

The singular ability of immunoglobulin genes to hypermutate their variable regions, while permitting the generation of high-affinity antibodies against foreign antigens, poses a problem in terms of maintenance of immunological self-tolerance. Immunoglobulin gene hypermutation driven by a foreign ant...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191878/
https://www.ncbi.nlm.nih.gov/pubmed/7836915
_version_ 1782147108474716160
collection PubMed
description The singular ability of immunoglobulin genes to hypermutate their variable regions, while permitting the generation of high-affinity antibodies against foreign antigens, poses a problem in terms of maintenance of immunological self-tolerance. Immunoglobulin gene hypermutation driven by a foreign antigen has the potential to generate antibodies that cross-react with self-components. Consequently, there must exist a mechanism in the periphery for inactivation of mature autoreactive B cell clones. The classical experimental system used to address this problem is the induction of tolerance to soluble, deaggregated human IgG. We have analyzed the mechanism of induction of tolerance to human IgG using transgenic mice that express a human IgM rheumatoid factor (IgM RF) on a large proportion of their B cells. Injection of deaggregated human IgG caused a specific deletion of those B cells that express an intact IgM RF on their cell surface. The degree of RF B cell deletion was proportional to the reduction in the proliferative response of splenocytes to antigen (aggregated human IgG), or to F(ab')2 fragments of anti-human IgM antibodies. Control experiments showed that IgG administration had little effect on the numbers of mouse Ig-bearing cells or their ability to proliferate to a nonspecific mitogen. Thus, the effects of IgG on the human IgM RF B cell are antigen specific and are not due to nonspecific toxic effects of the human IgG preparation. These experiments demonstrate that peripheral exposure to IgG induces deletion of reactive B cells, without any evidence for anergy, and differ from data obtained by other investigators studying tolerance to soluble protein antigens. The results imply that human Igs have distinct properties as soluble antigens, and that peripheral nonresponsiveness to IgG may be due to lymphocyte deletion.
format Text
id pubmed-2191878
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21918782008-04-16 Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice J Exp Med Articles The singular ability of immunoglobulin genes to hypermutate their variable regions, while permitting the generation of high-affinity antibodies against foreign antigens, poses a problem in terms of maintenance of immunological self-tolerance. Immunoglobulin gene hypermutation driven by a foreign antigen has the potential to generate antibodies that cross-react with self-components. Consequently, there must exist a mechanism in the periphery for inactivation of mature autoreactive B cell clones. The classical experimental system used to address this problem is the induction of tolerance to soluble, deaggregated human IgG. We have analyzed the mechanism of induction of tolerance to human IgG using transgenic mice that express a human IgM rheumatoid factor (IgM RF) on a large proportion of their B cells. Injection of deaggregated human IgG caused a specific deletion of those B cells that express an intact IgM RF on their cell surface. The degree of RF B cell deletion was proportional to the reduction in the proliferative response of splenocytes to antigen (aggregated human IgG), or to F(ab')2 fragments of anti-human IgM antibodies. Control experiments showed that IgG administration had little effect on the numbers of mouse Ig-bearing cells or their ability to proliferate to a nonspecific mitogen. Thus, the effects of IgG on the human IgM RF B cell are antigen specific and are not due to nonspecific toxic effects of the human IgG preparation. These experiments demonstrate that peripheral exposure to IgG induces deletion of reactive B cells, without any evidence for anergy, and differ from data obtained by other investigators studying tolerance to soluble protein antigens. The results imply that human Igs have distinct properties as soluble antigens, and that peripheral nonresponsiveness to IgG may be due to lymphocyte deletion. The Rockefeller University Press 1995-02-01 /pmc/articles/PMC2191878/ /pubmed/7836915 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice
title Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice
title_full Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice
title_fullStr Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice
title_full_unstemmed Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice
title_short Human immunoglobulin (IgG) induced deletion of IgM rheumatoid factor B cells in transgenic mice
title_sort human immunoglobulin (igg) induced deletion of igm rheumatoid factor b cells in transgenic mice
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191878/
https://www.ncbi.nlm.nih.gov/pubmed/7836915