Cargando…
Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues
Monocyte chemoattractant protein (MCP)-1 analogues were designed to determine the role of the NH2-terminal region in structure and function. The NH2-terminal residue was important for function and receptor binding, as it could not be deleted or extended. However the NH2-terminal pyroglutamate residu...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191888/ https://www.ncbi.nlm.nih.gov/pubmed/7836918 |
_version_ | 1782147110841352192 |
---|---|
collection | PubMed |
description | Monocyte chemoattractant protein (MCP)-1 analogues were designed to determine the role of the NH2-terminal region in structure and function. The NH2-terminal residue was important for function and receptor binding, as it could not be deleted or extended. However the NH2-terminal pyroglutamate residue of the wild type was not essential as it could be replaced by several other noncyclic amino acids without loss of activity. Residues 7-10 were essential for receptor desensitization, but were not sufficient for function, and the integrity of residues 1-6 were required for functional activity. A peptide corresponding to MCP-1, 1-10 lacked detectable receptor-binding activities, indicating that residues 1-10 are essential for MCP-1 function, but that other residues are also involved. Several truncated analogues, including 8-76, 9-76, and 10-76, desensitized MCP-1-induced Ca2+ induction, but were not significantly active. These analogues were antagonists of MCP-1 activity with the most potent being the 9-76 analogue (IC50 = 20 nM) The 9-76 specifically bound to MCP-1 receptors with a Kd of 8.3 nM, which was three-fold higher than MCP-1 (Kd 2.8 nM). The 9-76 analogue desensitized the Ca2+ response to MCP-1 and MCP- 3, but not to other CC chemokines, suggesting that it is MCP receptor specific. The availability of these compounds will be helpful in evaluating MCP receptor antagonists as anti-inflammatory therapeutics. |
format | Text |
id | pubmed-2191888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21918882008-04-16 Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues J Exp Med Articles Monocyte chemoattractant protein (MCP)-1 analogues were designed to determine the role of the NH2-terminal region in structure and function. The NH2-terminal residue was important for function and receptor binding, as it could not be deleted or extended. However the NH2-terminal pyroglutamate residue of the wild type was not essential as it could be replaced by several other noncyclic amino acids without loss of activity. Residues 7-10 were essential for receptor desensitization, but were not sufficient for function, and the integrity of residues 1-6 were required for functional activity. A peptide corresponding to MCP-1, 1-10 lacked detectable receptor-binding activities, indicating that residues 1-10 are essential for MCP-1 function, but that other residues are also involved. Several truncated analogues, including 8-76, 9-76, and 10-76, desensitized MCP-1-induced Ca2+ induction, but were not significantly active. These analogues were antagonists of MCP-1 activity with the most potent being the 9-76 analogue (IC50 = 20 nM) The 9-76 specifically bound to MCP-1 receptors with a Kd of 8.3 nM, which was three-fold higher than MCP-1 (Kd 2.8 nM). The 9-76 analogue desensitized the Ca2+ response to MCP-1 and MCP- 3, but not to other CC chemokines, suggesting that it is MCP receptor specific. The availability of these compounds will be helpful in evaluating MCP receptor antagonists as anti-inflammatory therapeutics. The Rockefeller University Press 1995-02-01 /pmc/articles/PMC2191888/ /pubmed/7836918 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues |
title | Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues |
title_full | Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues |
title_fullStr | Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues |
title_full_unstemmed | Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues |
title_short | Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues |
title_sort | antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical nh2-terminal residues |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191888/ https://www.ncbi.nlm.nih.gov/pubmed/7836918 |