Cargando…

A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells

Necrotizing and crescentic glomerulonephritis (NCGN) is frequently associated with circulating antineutrophil cytoplasmic autoantibodies (ANCA). It is established that ANCA are specific for soluble enzymes of granules of polymorphonuclear neutrophil granulocytes (PMN), such as myeloperoxidase (MPO)...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191894/
https://www.ncbi.nlm.nih.gov/pubmed/7836914
_version_ 1782147112249589760
collection PubMed
description Necrotizing and crescentic glomerulonephritis (NCGN) is frequently associated with circulating antineutrophil cytoplasmic autoantibodies (ANCA). It is established that ANCA are specific for soluble enzymes of granules of polymorphonuclear neutrophil granulocytes (PMN), such as myeloperoxidase (MPO) or protease 3 (PR3). The purpose of this study was to identify membrane proteins of PMNs, and/or glomerular cells, as additional autoantigenic ANCA targets. When membrane protein fractions were prepared from PMNs and isolated human glomeruli, and immunoblotted with ANCA sera of NCGN patients, two bands with apparent molecular masses of 170 and 80-110 kD (gp170/80-110) were labeled in PMNs, and a 130-kD glycoprotein (gp130) in glomeruli. Gp130 was purified, and monoclonal and rabbit antibodies (Abs) were produced which showed the same double specificity as the patient's ANCA. Using these probes, evidence was provided that gp170/80-110 is identical with human lysosomal-associated membrane protein 2 (h-lamp-2), because both proteins were immunologically cross-reactive and screening of a cDNA expression library from human promyelocytic leukemia cells with anti- gp130 Ab yielded a clone derived from h-lamp-2. Gp170/80-110 was localized primarily in granule membranes of resting PMNs, and was translocated to the cell surfaces by activation with FMLP. By contrast, gp130 was localized in the surface membranes of endothelial cells of human glomerular and renal interstitial capillaries, rather than in lysosomes, as found for h-lamp-2. Potential clinical relevance of autoantibodies to gp170/80-110 and gp130 was assessed in a preliminary trial, in which ANCA sera of patients (n = 16) with NCGN were probed with purified or recombinant antigens. Specific reactivity was detected in approximately 90% of cases with active phases of NCGN, and frequently also in combination with autoantibodies specific for PR3 or MPO. Collectively, these data provide evidence that h-lamp-2 in PMNs and a different, structurally related 130-kD membrane protein on the cell surface of renal microvascular endothelial cells are autoantigenic targets for ANCA in patients with active NCGN.
format Text
id pubmed-2191894
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21918942008-04-16 A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells J Exp Med Articles Necrotizing and crescentic glomerulonephritis (NCGN) is frequently associated with circulating antineutrophil cytoplasmic autoantibodies (ANCA). It is established that ANCA are specific for soluble enzymes of granules of polymorphonuclear neutrophil granulocytes (PMN), such as myeloperoxidase (MPO) or protease 3 (PR3). The purpose of this study was to identify membrane proteins of PMNs, and/or glomerular cells, as additional autoantigenic ANCA targets. When membrane protein fractions were prepared from PMNs and isolated human glomeruli, and immunoblotted with ANCA sera of NCGN patients, two bands with apparent molecular masses of 170 and 80-110 kD (gp170/80-110) were labeled in PMNs, and a 130-kD glycoprotein (gp130) in glomeruli. Gp130 was purified, and monoclonal and rabbit antibodies (Abs) were produced which showed the same double specificity as the patient's ANCA. Using these probes, evidence was provided that gp170/80-110 is identical with human lysosomal-associated membrane protein 2 (h-lamp-2), because both proteins were immunologically cross-reactive and screening of a cDNA expression library from human promyelocytic leukemia cells with anti- gp130 Ab yielded a clone derived from h-lamp-2. Gp170/80-110 was localized primarily in granule membranes of resting PMNs, and was translocated to the cell surfaces by activation with FMLP. By contrast, gp130 was localized in the surface membranes of endothelial cells of human glomerular and renal interstitial capillaries, rather than in lysosomes, as found for h-lamp-2. Potential clinical relevance of autoantibodies to gp170/80-110 and gp130 was assessed in a preliminary trial, in which ANCA sera of patients (n = 16) with NCGN were probed with purified or recombinant antigens. Specific reactivity was detected in approximately 90% of cases with active phases of NCGN, and frequently also in combination with autoantibodies specific for PR3 or MPO. Collectively, these data provide evidence that h-lamp-2 in PMNs and a different, structurally related 130-kD membrane protein on the cell surface of renal microvascular endothelial cells are autoantigenic targets for ANCA in patients with active NCGN. The Rockefeller University Press 1995-02-01 /pmc/articles/PMC2191894/ /pubmed/7836914 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
title A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
title_full A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
title_fullStr A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
title_full_unstemmed A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
title_short A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
title_sort novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191894/
https://www.ncbi.nlm.nih.gov/pubmed/7836914