Cargando…

Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis

Lewis rats are susceptible to several forms of experimental arthritis- induced using heat-killed Mycobacterium tuberculosis (adjuvant arthritis, or AA), streptococcal cell walls, collagen type II, and the lipoidal amine CP20961. Prior immunization with the mycobacterial 65-kD heat shock protein (hsp...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191900/
https://www.ncbi.nlm.nih.gov/pubmed/7869052
_version_ 1782147113649438720
collection PubMed
description Lewis rats are susceptible to several forms of experimental arthritis- induced using heat-killed Mycobacterium tuberculosis (adjuvant arthritis, or AA), streptococcal cell walls, collagen type II, and the lipoidal amine CP20961. Prior immunization with the mycobacterial 65-kD heat shock protein (hsp65) was reported to protect against AA, and other athritis models not using M. tuberculosis, via a T cell-mediated mechanism. Hsp65 shares 48% amino acid identity with mammalian hsp60, which is expressed at elevated levels in inflamed synovia. Several studies have reported cross-reactive T cell recognition of mycobacterial hsp65 and self hsp60 in arthritic and normal individuals. We previously described nine major histocompatibility complex class II- restricted epitopes in mycobacterial hsp65 recognized by Lewis rat T cells. Of these only one, covering the 256-270 sequence, primed for cross-reactive T cell responses to the corresponding region of rat hsp60. Here we have tested each hsp65 epitope for protective activity by immunizing rats with synthetic peptides. A peptide containing the 256-270 epitope, which induced cross-reactive T cells, was the only one able to confer protection against AA. Similarly, administration of a T cell line specific for this epitope protected against AA. Preimmunization with the 256-270 epitope induced T cells that responded to heat-shocked syngeneic antigen-presenting cells, and also protected against CP20961-induced arthritis, indicating that activation of T cells, recognizing an epitope in self hsp60 can protect against arthritis induced without mycobacteria. Therefore, in contrast to the accepted concept that cross-reactive T cell recognition of foreign and self antigens might induce aggressive autoimmune disease, we propose that cross-reactivity between bacterial and self hsp60 might also be used to maintain a protective self-reactive T cell population. This discovery might have important implications for understanding T cell- mediated regulation of inflammation.
format Text
id pubmed-2191900
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21919002008-04-16 Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis J Exp Med Articles Lewis rats are susceptible to several forms of experimental arthritis- induced using heat-killed Mycobacterium tuberculosis (adjuvant arthritis, or AA), streptococcal cell walls, collagen type II, and the lipoidal amine CP20961. Prior immunization with the mycobacterial 65-kD heat shock protein (hsp65) was reported to protect against AA, and other athritis models not using M. tuberculosis, via a T cell-mediated mechanism. Hsp65 shares 48% amino acid identity with mammalian hsp60, which is expressed at elevated levels in inflamed synovia. Several studies have reported cross-reactive T cell recognition of mycobacterial hsp65 and self hsp60 in arthritic and normal individuals. We previously described nine major histocompatibility complex class II- restricted epitopes in mycobacterial hsp65 recognized by Lewis rat T cells. Of these only one, covering the 256-270 sequence, primed for cross-reactive T cell responses to the corresponding region of rat hsp60. Here we have tested each hsp65 epitope for protective activity by immunizing rats with synthetic peptides. A peptide containing the 256-270 epitope, which induced cross-reactive T cells, was the only one able to confer protection against AA. Similarly, administration of a T cell line specific for this epitope protected against AA. Preimmunization with the 256-270 epitope induced T cells that responded to heat-shocked syngeneic antigen-presenting cells, and also protected against CP20961-induced arthritis, indicating that activation of T cells, recognizing an epitope in self hsp60 can protect against arthritis induced without mycobacteria. Therefore, in contrast to the accepted concept that cross-reactive T cell recognition of foreign and self antigens might induce aggressive autoimmune disease, we propose that cross-reactivity between bacterial and self hsp60 might also be used to maintain a protective self-reactive T cell population. This discovery might have important implications for understanding T cell- mediated regulation of inflammation. The Rockefeller University Press 1995-03-01 /pmc/articles/PMC2191900/ /pubmed/7869052 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis
title Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis
title_full Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis
title_fullStr Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis
title_full_unstemmed Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis
title_short Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis
title_sort activation of t cells recognizing self 60-kd heat shock protein can protect against experimental arthritis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191900/
https://www.ncbi.nlm.nih.gov/pubmed/7869052