Cargando…

The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors

The recently cloned murine flt3 ligand (FL) was studied for its ability to stimulate the growth of primitive (Lin-Sca-1+) and more committed (Lin-Sca-1-) murine bone marrow progenitor cells, alone and in combination with other hematopoietic growth factors (HGFs). Whereas FL was a weak proliferative...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191974/
https://www.ncbi.nlm.nih.gov/pubmed/7535335
_version_ 1782147131121860608
collection PubMed
description The recently cloned murine flt3 ligand (FL) was studied for its ability to stimulate the growth of primitive (Lin-Sca-1+) and more committed (Lin-Sca-1-) murine bone marrow progenitor cells, alone and in combination with other hematopoietic growth factors (HGFs). Whereas FL was a weak proliferative stimulator alone, it potently synergized with a number of other HGFs, including all four colony-stimulating factor (CSF), interleukin (IL) 6, IL-11, IL-12, and stem cell factor (SCF), to promote the colony formation of Lin-Sca-1+, but not Lin-Sca-1- or erythroid progenitor cells. The synergistic activity of FL was concentration dependent, with maximum stimulation occurring at 250 ng/ml, and was observed when cells were plated at a concentration of one cell per culture, suggesting that its effects are directly mediated. 2 wk of treatment with FL in combination with IL-3 or SCF resulted in the production of a high proportion of mature myeloid cells (granulocytes and macrophages), whereas the combination of FL with G- CSF, IL-11, or IL-12 resulted predominantly in the formation of cells with an immature blast cell appearance. Accordingly, FL in combination with G-CSF or IL-11 expanded the number of progenitors more than 40- fold after 2 wk incubation. Thus, FL emerges as a potent synergistic HGF, that in combination with numerous other HGFs, can directly stimulate the proliferation, myeloid differentiation, and expansion of primitive hematopoietic progenitor cells.
format Text
id pubmed-2191974
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21919742008-04-16 The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors J Exp Med Articles The recently cloned murine flt3 ligand (FL) was studied for its ability to stimulate the growth of primitive (Lin-Sca-1+) and more committed (Lin-Sca-1-) murine bone marrow progenitor cells, alone and in combination with other hematopoietic growth factors (HGFs). Whereas FL was a weak proliferative stimulator alone, it potently synergized with a number of other HGFs, including all four colony-stimulating factor (CSF), interleukin (IL) 6, IL-11, IL-12, and stem cell factor (SCF), to promote the colony formation of Lin-Sca-1+, but not Lin-Sca-1- or erythroid progenitor cells. The synergistic activity of FL was concentration dependent, with maximum stimulation occurring at 250 ng/ml, and was observed when cells were plated at a concentration of one cell per culture, suggesting that its effects are directly mediated. 2 wk of treatment with FL in combination with IL-3 or SCF resulted in the production of a high proportion of mature myeloid cells (granulocytes and macrophages), whereas the combination of FL with G- CSF, IL-11, or IL-12 resulted predominantly in the formation of cells with an immature blast cell appearance. Accordingly, FL in combination with G-CSF or IL-11 expanded the number of progenitors more than 40- fold after 2 wk incubation. Thus, FL emerges as a potent synergistic HGF, that in combination with numerous other HGFs, can directly stimulate the proliferation, myeloid differentiation, and expansion of primitive hematopoietic progenitor cells. The Rockefeller University Press 1995-04-01 /pmc/articles/PMC2191974/ /pubmed/7535335 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
title The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
title_full The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
title_fullStr The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
title_full_unstemmed The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
title_short The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors
title_sort flt3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (il) 11, il-12, and other hematopoietic growth factors
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191974/
https://www.ncbi.nlm.nih.gov/pubmed/7535335