Cargando…
CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide
CD11c/CD18 is a member of the leukocyte integrin family, heterodimeric adhesion molecules that interact with a diverse repertoire of ligands, including bacterial lipopolysaccharide (LPS). Their role as signal transducing receptors remains uncertain. We used a heterologous expression system to determ...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191975/ https://www.ncbi.nlm.nih.gov/pubmed/7535339 |
Sumario: | CD11c/CD18 is a member of the leukocyte integrin family, heterodimeric adhesion molecules that interact with a diverse repertoire of ligands, including bacterial lipopolysaccharide (LPS). Their role as signal transducing receptors remains uncertain. We used a heterologous expression system to determine if CD11c/CD18 was capable of initiating signal transduction in response to LPS-binding, as assessed by the induced translocation of nuclear factor-kappa B. We have previously reported that Chinese hamster ovary (CHO)-K1 fibroblasts, normally unresponsive to LPS, acquire serum-dependent macrophage-like responses to LPS when transfected with CD14 (Golenbock, D.T., Y. Liu, F. Millham, M. Freeman, and R. Zoeller. 1993. J. Biol. Chem. 268:22055-22059), a known LPS receptor. In contrast, CHO cells acquired serum-independent responses to Gram-negative bacteria and LPS when transfected with CD11c/CD18 (CHO/CD11c). In comparison to CHO cells transfected with CD14 (CHO/CD14), responses in CHO/CD11c cells were slower, required higher endotoxin concentrations for maximal response, and were not inhibited by the presence of antibodies to CD14. CD11c/CD18 is, thus, the second phagocyte receptor, in addition to CD14, which has been shown to have the capacity to activate cells after binding to LPS. The function of this receptor in normal phagocytes may be limited to the recognition of LPS in infected tissues, where LPS-CD14 interactions are not favored because of the absence of serum proteins. |
---|