Cargando…

Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients

Major histocompatibility complex (MHC) class II deficiency is an inherited autosomal recessive combined immunodeficiency. The disease is known as bare lymphocyte syndrome (BLS). BLS is characterized by a lack of constitutive MHC class II expression on macrophages and B cells as well as a lack of ind...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191976/
https://www.ncbi.nlm.nih.gov/pubmed/7699327
_version_ 1782147131594768384
collection PubMed
description Major histocompatibility complex (MHC) class II deficiency is an inherited autosomal recessive combined immunodeficiency. The disease is known as bare lymphocyte syndrome (BLS). BLS is characterized by a lack of constitutive MHC class II expression on macrophages and B cells as well as a lack of induced MHC class II expression on cells other than professional antigen-presenting cells (APCs) due to the absence of mRNA and protein of the human leukocyte antigen (HLA) class II molecules, designated HLA-DR, -DQ, and -DP. The defect in gene expression is located at the transcriptional level and affects all class II genes simultaneously. Here we have analyzed transcription and protein expression of class II antigens in Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines and mononuclear cells (MNCs) of twin brothers. Whereas flow cytometric analysis failed to detect class II antigens on the cell surface of the patients' EBV-B cells and MNCs, examination of the genes coding for HLA-DR, -DQ, -DP, and the invariant chain (Ii) by reverse transcriptase-polymerase chain reaction amplification resulted in an unusual mRNA pattern in the B cell lines of the patients (HLA-DR alpha +, -DR beta, -DQ alpha +, -DQ beta -, -DP alpha -; -DP beta +, Ii+). In accordance with these findings no HLA-DR beta-specific protein was detected by immunoblotting, whereas low levels of HLA-DR alpha and normal levels of Ii were present. In contrast to EBV-B cells, the MNCs of both patients displayed a residual HLA-DR beta, -DQ beta, and -DP alpha mRNA signal. Furthermore, HLA-DR beta-specific protein was found in addition to HLA-DR alpha by immunoblotting of cell lysates, even though it was clearly decreased as compared with controls. Our results indicate that the defect in class II antigen expression is not necessarily present to the same extent in B cells and cells of other lineages. mRNA levels of HLA-DR beta were found to be enriched in adherent cells within the MNC fraction. Further investigations indicated that the MHC class II expressed is functional in antigen presentation, as the two boys' CD4+ T cells became activated and expressed interleukin-2R after stimulation of peripheral blood mononuclear cell cultures with recall antigen (tetanus toxoid). Furthermore, T cells tested in one of the two patients responded to both MHC class I and II allostimulation, and this response was inhibited by monoclonal antibodies of the respective specificity.(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2191976
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21919762008-04-16 Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients J Exp Med Articles Major histocompatibility complex (MHC) class II deficiency is an inherited autosomal recessive combined immunodeficiency. The disease is known as bare lymphocyte syndrome (BLS). BLS is characterized by a lack of constitutive MHC class II expression on macrophages and B cells as well as a lack of induced MHC class II expression on cells other than professional antigen-presenting cells (APCs) due to the absence of mRNA and protein of the human leukocyte antigen (HLA) class II molecules, designated HLA-DR, -DQ, and -DP. The defect in gene expression is located at the transcriptional level and affects all class II genes simultaneously. Here we have analyzed transcription and protein expression of class II antigens in Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines and mononuclear cells (MNCs) of twin brothers. Whereas flow cytometric analysis failed to detect class II antigens on the cell surface of the patients' EBV-B cells and MNCs, examination of the genes coding for HLA-DR, -DQ, -DP, and the invariant chain (Ii) by reverse transcriptase-polymerase chain reaction amplification resulted in an unusual mRNA pattern in the B cell lines of the patients (HLA-DR alpha +, -DR beta, -DQ alpha +, -DQ beta -, -DP alpha -; -DP beta +, Ii+). In accordance with these findings no HLA-DR beta-specific protein was detected by immunoblotting, whereas low levels of HLA-DR alpha and normal levels of Ii were present. In contrast to EBV-B cells, the MNCs of both patients displayed a residual HLA-DR beta, -DQ beta, and -DP alpha mRNA signal. Furthermore, HLA-DR beta-specific protein was found in addition to HLA-DR alpha by immunoblotting of cell lysates, even though it was clearly decreased as compared with controls. Our results indicate that the defect in class II antigen expression is not necessarily present to the same extent in B cells and cells of other lineages. mRNA levels of HLA-DR beta were found to be enriched in adherent cells within the MNC fraction. Further investigations indicated that the MHC class II expressed is functional in antigen presentation, as the two boys' CD4+ T cells became activated and expressed interleukin-2R after stimulation of peripheral blood mononuclear cell cultures with recall antigen (tetanus toxoid). Furthermore, T cells tested in one of the two patients responded to both MHC class I and II allostimulation, and this response was inhibited by monoclonal antibodies of the respective specificity.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1995-04-01 /pmc/articles/PMC2191976/ /pubmed/7699327 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients
title Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients
title_full Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients
title_fullStr Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients
title_full_unstemmed Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients
title_short Molecular characterization of major histocompatibility complex class II gene expression and demonstration of antigen-specific T cell response indicate a new phenotype in class II-deficient patients
title_sort molecular characterization of major histocompatibility complex class ii gene expression and demonstration of antigen-specific t cell response indicate a new phenotype in class ii-deficient patients
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2191976/
https://www.ncbi.nlm.nih.gov/pubmed/7699327