Cargando…

Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor

Positive selection of T cells is a complex developmental process generating long-lived, functionally mature CD4+CD8- and CD4-CD8+ cells from short-lived, immature CD4+CD8+ precursors. The process is initiated in the thymus by interaction of the alpha beta TCR with molecules encoded by the MHC, occur...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192069/
https://www.ncbi.nlm.nih.gov/pubmed/7759993
_version_ 1782147153444995072
collection PubMed
description Positive selection of T cells is a complex developmental process generating long-lived, functionally mature CD4+CD8- and CD4-CD8+ cells from short-lived, immature CD4+CD8+ precursors. The process is initiated in the thymus by interaction of the alpha beta TCR with molecules encoded by the MHC, occurs without cell division, and involves rescue from programmed cell death (PCD), as well as induction of differentiation and maturation of selected precursors. It is unclear whether development of small, positively selected CD4+CD8+ thymocytes (characterized by up-regulated levels of TCR and CD69 molecules) depends on further interactions with MHC molecules and, if so, whether such interactions are required for survival, for maturation, or for both. The involvement of the TCR and/or CD4/CD8 coreceptors in transmitting additional signals is also unknown. We have examined these questions by analyzing survival and differentiation of early (CD4+CD8+TCRhi) and later (CD4-CD8+TCRhi) postselection stages of thymocytes from normal and bcl-2 transgenic mice expressing transgenic, class I MHC-restricted TCR, upon intrathymic transfer into recipients that lacked ligands either for both the TCR and CD8 coreceptor, or for the TCR only. The results provide direct evidence that induction of differentiation of CD4+CD8+ thymocytes by recognition of MHC molecules does not rescue them from PCD and is insufficient to activate the entire maturation program. Both processes require continual engagement of the TCR by positively selecting MHC molecules that, at least in the case of class I MHC-restricted CD4-CD8+ T cells, cannot be substituted by the engagement of coreceptor alone.
format Text
id pubmed-2192069
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21920692008-04-16 Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor J Exp Med Articles Positive selection of T cells is a complex developmental process generating long-lived, functionally mature CD4+CD8- and CD4-CD8+ cells from short-lived, immature CD4+CD8+ precursors. The process is initiated in the thymus by interaction of the alpha beta TCR with molecules encoded by the MHC, occurs without cell division, and involves rescue from programmed cell death (PCD), as well as induction of differentiation and maturation of selected precursors. It is unclear whether development of small, positively selected CD4+CD8+ thymocytes (characterized by up-regulated levels of TCR and CD69 molecules) depends on further interactions with MHC molecules and, if so, whether such interactions are required for survival, for maturation, or for both. The involvement of the TCR and/or CD4/CD8 coreceptors in transmitting additional signals is also unknown. We have examined these questions by analyzing survival and differentiation of early (CD4+CD8+TCRhi) and later (CD4-CD8+TCRhi) postselection stages of thymocytes from normal and bcl-2 transgenic mice expressing transgenic, class I MHC-restricted TCR, upon intrathymic transfer into recipients that lacked ligands either for both the TCR and CD8 coreceptor, or for the TCR only. The results provide direct evidence that induction of differentiation of CD4+CD8+ thymocytes by recognition of MHC molecules does not rescue them from PCD and is insufficient to activate the entire maturation program. Both processes require continual engagement of the TCR by positively selecting MHC molecules that, at least in the case of class I MHC-restricted CD4-CD8+ T cells, cannot be substituted by the engagement of coreceptor alone. The Rockefeller University Press 1995-06-01 /pmc/articles/PMC2192069/ /pubmed/7759993 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor
title Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor
title_full Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor
title_fullStr Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor
title_full_unstemmed Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor
title_short Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor
title_sort positive selection of t cells: rescue from programmed cell death and differentiation require continual engagement of the t cell receptor
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192069/
https://www.ncbi.nlm.nih.gov/pubmed/7759993