Cargando…
Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA
In comparison with HLA-A and -B, the protein products of the HLA-C locus are poorly characterized, in part because of their low level of expression at the cell surface. Here, we examine how protein-protein interactions during assembly and regulation of the mRNA level affect cell surface expression o...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192076/ https://www.ncbi.nlm.nih.gov/pubmed/7760000 |
_version_ | 1782147155108036608 |
---|---|
collection | PubMed |
description | In comparison with HLA-A and -B, the protein products of the HLA-C locus are poorly characterized, in part because of their low level of expression at the cell surface. Here, we examine how protein-protein interactions during assembly and regulation of the mRNA level affect cell surface expression of HLA-C. We find that intrinsic properties of the HLA-C heavy chain proteins do not correlate with low cell surface expression: HLA-C heavy chains associate and dissociate with beta 2- microglobulin (beta 2m) at rates comparable to those found for HLA-A and -B, and increased competition for beta 2m does not alter the surface expression of HLA-C. From studies of chimeric genes spliced from the HLA-B7 and -Cw3 genes, we find that chimeric proteins containing the B7 peptide-binding groove can have low cell surface expression, suggesting that inefficiency in binding peptides is not the cause of low cell surface expression for HLA-C. The surface levels of HLA-A, -B, or -C in cells transfected with cDNA can be similar, implicating noncoding regions of HLA-C heavy chain genes in the regulation of surface expression. We find that HLA-C mRNA is expressed at lower levels than HLA-B mRNA and that this difference results from faster degradation of the HLA-C message. Experiments examining chimeric B7/Cw3 and B7/Cw6 genes suggest that a region determining low expression of HLA-C is to be found between the 3' end of exon 3 and a site in the 3' untranslated region, approximately 600 bases downstream of the translation stop codon. |
format | Text |
id | pubmed-2192076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21920762008-04-16 Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA J Exp Med Articles In comparison with HLA-A and -B, the protein products of the HLA-C locus are poorly characterized, in part because of their low level of expression at the cell surface. Here, we examine how protein-protein interactions during assembly and regulation of the mRNA level affect cell surface expression of HLA-C. We find that intrinsic properties of the HLA-C heavy chain proteins do not correlate with low cell surface expression: HLA-C heavy chains associate and dissociate with beta 2- microglobulin (beta 2m) at rates comparable to those found for HLA-A and -B, and increased competition for beta 2m does not alter the surface expression of HLA-C. From studies of chimeric genes spliced from the HLA-B7 and -Cw3 genes, we find that chimeric proteins containing the B7 peptide-binding groove can have low cell surface expression, suggesting that inefficiency in binding peptides is not the cause of low cell surface expression for HLA-C. The surface levels of HLA-A, -B, or -C in cells transfected with cDNA can be similar, implicating noncoding regions of HLA-C heavy chain genes in the regulation of surface expression. We find that HLA-C mRNA is expressed at lower levels than HLA-B mRNA and that this difference results from faster degradation of the HLA-C message. Experiments examining chimeric B7/Cw3 and B7/Cw6 genes suggest that a region determining low expression of HLA-C is to be found between the 3' end of exon 3 and a site in the 3' untranslated region, approximately 600 bases downstream of the translation stop codon. The Rockefeller University Press 1995-06-01 /pmc/articles/PMC2192076/ /pubmed/7760000 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA |
title | Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA |
title_full | Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA |
title_fullStr | Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA |
title_full_unstemmed | Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA |
title_short | Low HLA-C expression at cell surfaces correlates with increased turnover of heavy chain mRNA |
title_sort | low hla-c expression at cell surfaces correlates with increased turnover of heavy chain mrna |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192076/ https://www.ncbi.nlm.nih.gov/pubmed/7760000 |