Cargando…

Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides

In the nonobese diabetic (NOD) mouse, susceptibility to insulin- dependent diabetes mellitus is in part controlled by a single expressed class II major histocompatibility complex (MHC) molecule, I-Ag7. This molecule probably exerts its control through the representation of a self-peptide, derived fr...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192152/
https://www.ncbi.nlm.nih.gov/pubmed/7650494
_version_ 1782147172875108352
collection PubMed
description In the nonobese diabetic (NOD) mouse, susceptibility to insulin- dependent diabetes mellitus is in part controlled by a single expressed class II major histocompatibility complex (MHC) molecule, I-Ag7. This molecule probably exerts its control through the representation of a self-peptide, derived from an unknown beta cell antigen, leading to T cell activation and eventual islet destruction. In this paper, synthetic peptides have been used to compete for binding to the I-Ag7 molecule in an attempt to suppress the autoimmune response. The administration of an I-Ag7-binding immunogenic peptide, lambda repressor (cI) 12-26, in a water and oil emulsion (incomplete Freund's adjuvant) can prevent the transfer of IDDM into irradiated recipients by spleen cells from diabetic donors. Nonbinding, nonimmunogenic peptides have no effect in this situation. However, the immune response to the "blocking" peptide in these experiments was a complicating factor in interpreting the results. To establish that the effect was at the level of competition for MHC binding, two additional approaches were tried. First, tolerance was induced to the immunogenic peptide, cI 12-26, before using it to "block" disease. Tolerance abolished the effect on diabetes transfer. Second, an effort was made to identify peptides that were nonimmunogenic but that bound to I-Ag7. Such a peptide, mouse prostatic secretory glycoprotein precursor 63-76, had no effect on the incidence of transferred disease. We conclude that the "blocking" effects seen in initial experiments in the NOD mouse were not caused by blockade of MHC presentation, but by other unknown effects related to the immunogenicity of the "blocking" peptide.
format Text
id pubmed-2192152
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21921522008-04-16 Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides J Exp Med Articles In the nonobese diabetic (NOD) mouse, susceptibility to insulin- dependent diabetes mellitus is in part controlled by a single expressed class II major histocompatibility complex (MHC) molecule, I-Ag7. This molecule probably exerts its control through the representation of a self-peptide, derived from an unknown beta cell antigen, leading to T cell activation and eventual islet destruction. In this paper, synthetic peptides have been used to compete for binding to the I-Ag7 molecule in an attempt to suppress the autoimmune response. The administration of an I-Ag7-binding immunogenic peptide, lambda repressor (cI) 12-26, in a water and oil emulsion (incomplete Freund's adjuvant) can prevent the transfer of IDDM into irradiated recipients by spleen cells from diabetic donors. Nonbinding, nonimmunogenic peptides have no effect in this situation. However, the immune response to the "blocking" peptide in these experiments was a complicating factor in interpreting the results. To establish that the effect was at the level of competition for MHC binding, two additional approaches were tried. First, tolerance was induced to the immunogenic peptide, cI 12-26, before using it to "block" disease. Tolerance abolished the effect on diabetes transfer. Second, an effort was made to identify peptides that were nonimmunogenic but that bound to I-Ag7. Such a peptide, mouse prostatic secretory glycoprotein precursor 63-76, had no effect on the incidence of transferred disease. We conclude that the "blocking" effects seen in initial experiments in the NOD mouse were not caused by blockade of MHC presentation, but by other unknown effects related to the immunogenicity of the "blocking" peptide. The Rockefeller University Press 1995-09-01 /pmc/articles/PMC2192152/ /pubmed/7650494 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
title Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
title_full Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
title_fullStr Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
title_full_unstemmed Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
title_short Prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
title_sort prevention of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192152/
https://www.ncbi.nlm.nih.gov/pubmed/7650494