Cargando…

The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase

Classically, osteoarthritis (OA) has been considered a noninflammatory disease. However, the detection of selected inflammatory mediators in osteoarthritic fluid, in the absence of significant inflammatory cell infiltrate, is increasingly appreciated. We sought to identify the inflammatory component...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192230/
https://www.ncbi.nlm.nih.gov/pubmed/7500055
_version_ 1782147191201071104
collection PubMed
description Classically, osteoarthritis (OA) has been considered a noninflammatory disease. However, the detection of selected inflammatory mediators in osteoarthritic fluid, in the absence of significant inflammatory cell infiltrate, is increasingly appreciated. We sought to identify the inflammatory component in human OA-affected cartilage that may be involved in cartilage damage/destruction. Using Western blot analysis and an antibody to the conserved region of nitric oxide synthase (NOS), we have observed up-regulation of NOS, one of the "key players" of inflammation, in chondrocytes of OA-affected patients. Remarkably, none of the cartilage samples examined from normal joints demonstrated detectable amounts of this NOS. Western blot analysis using the same alpha-NOS antibody indicated that this NOS from OA-affected cartilage (OA-NOS) was larger in size than (and distinct from) transfected human hepatocyte or murine inducible NOS (iNOS) (150 versus 133 kD) and similar in size to neuronal constitutive NOS (ncNOS). Antibodies specific for iNOS showed binding to murine and human iNOS but not to OA- NOS, endothelial constitutive NOS, or ncNOS. Antibodies specific for ncNOS bound to ncNOS and also to OA-NOS, but not to murine or human iNOS or endothelial constitutive NOS. Incubation of OA cartilage in serum-free medium resulted in spontaneous release, for up to 72 h, of substantial amounts of nitrite (up to approximately 80 microM/100 mg wet tissue), which could be inhibited by at least 80% with various inhibitors of iNOS, including inhibitors of protein synthesis and transcription factor NF-kappa B, but which (unlike murine macrophage iNOS) was not sensitive to hydrocortisone or TGF-beta. Exposure of OA- affected cartilage to interleukin 1 beta, tumor necrosis factor-alpha, and lipopolysaccharide resulted in approximately 20-50% augmentation of nitrite accumulation, which was also sensitive to cycloheximide and pyrrolidine dithiocarbamate. Hence, our data indicate that OA-NOS (based on immunoreactivity and molecular weight) is similar to ncNOS and that it releases nitric oxide, which may contribute to the inflammation and pathogenesis of cartilage destruction in OA.
format Text
id pubmed-2192230
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21922302008-04-16 The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase J Exp Med Articles Classically, osteoarthritis (OA) has been considered a noninflammatory disease. However, the detection of selected inflammatory mediators in osteoarthritic fluid, in the absence of significant inflammatory cell infiltrate, is increasingly appreciated. We sought to identify the inflammatory component in human OA-affected cartilage that may be involved in cartilage damage/destruction. Using Western blot analysis and an antibody to the conserved region of nitric oxide synthase (NOS), we have observed up-regulation of NOS, one of the "key players" of inflammation, in chondrocytes of OA-affected patients. Remarkably, none of the cartilage samples examined from normal joints demonstrated detectable amounts of this NOS. Western blot analysis using the same alpha-NOS antibody indicated that this NOS from OA-affected cartilage (OA-NOS) was larger in size than (and distinct from) transfected human hepatocyte or murine inducible NOS (iNOS) (150 versus 133 kD) and similar in size to neuronal constitutive NOS (ncNOS). Antibodies specific for iNOS showed binding to murine and human iNOS but not to OA- NOS, endothelial constitutive NOS, or ncNOS. Antibodies specific for ncNOS bound to ncNOS and also to OA-NOS, but not to murine or human iNOS or endothelial constitutive NOS. Incubation of OA cartilage in serum-free medium resulted in spontaneous release, for up to 72 h, of substantial amounts of nitrite (up to approximately 80 microM/100 mg wet tissue), which could be inhibited by at least 80% with various inhibitors of iNOS, including inhibitors of protein synthesis and transcription factor NF-kappa B, but which (unlike murine macrophage iNOS) was not sensitive to hydrocortisone or TGF-beta. Exposure of OA- affected cartilage to interleukin 1 beta, tumor necrosis factor-alpha, and lipopolysaccharide resulted in approximately 20-50% augmentation of nitrite accumulation, which was also sensitive to cycloheximide and pyrrolidine dithiocarbamate. Hence, our data indicate that OA-NOS (based on immunoreactivity and molecular weight) is similar to ncNOS and that it releases nitric oxide, which may contribute to the inflammation and pathogenesis of cartilage destruction in OA. The Rockefeller University Press 1995-12-01 /pmc/articles/PMC2192230/ /pubmed/7500055 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
title The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
title_full The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
title_fullStr The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
title_full_unstemmed The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
title_short The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
title_sort expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192230/
https://www.ncbi.nlm.nih.gov/pubmed/7500055