Cargando…
Thymic selection and cell division
Cell division during thymic selection was studied with a system in which purified populations of T cell antigen receptor (TCR)- CD4+8+ (double-positive [DP]) cells and fetal thymic epithelial cells (TEC) were reaggregated in tissue culture. In this system, immature DP cells differentiate into mature...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192303/ https://www.ncbi.nlm.nih.gov/pubmed/7561699 |
_version_ | 1782147208250916864 |
---|---|
collection | PubMed |
description | Cell division during thymic selection was studied with a system in which purified populations of T cell antigen receptor (TCR)- CD4+8+ (double-positive [DP]) cells and fetal thymic epithelial cells (TEC) were reaggregated in tissue culture. In this system, immature DP cells differentiate into mature single-positive (SP) CD4+8- and CD4-8+ TCRhi cells within 3-4 d, indicative of positive selection. By adding the DNA precursor, bromodeoxyuridine, to the cultures and staining cells for bromodeoxyuridine incorporation, T cell division in reaggregation cultures was found to be high on day 1, low on day 2, and high on days 4-5. Cell separation studies established that cell division on day 1 was restricted to DP blast cells. In the absence of blast cells, small DP cells failed to proliferate and differentiated into SP cells without cell division, thus indicating that proliferation is not an essential component of positive selection. This applied to SP cells generated within the first 2-3 d. Surprisingly, the SP cells generated later in culture showed a high rate of cell division; the proliferating SP cells were TCRhi and included both CD4+8- and CD4-8+ cells. Turnover of TCRhi SP cells was also prominent in the normal neonatal thymus and in TEC reaggregation cultures prepared with adult lymph node T cells. We speculate that division of mature SP cells in the perinatal thymic microenvironment is driven by stimulatory cytokines released from TEC. Such proliferation could be a device to expand the mature T cell repertoire before export to the periphery. |
format | Text |
id | pubmed-2192303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21923032008-04-16 Thymic selection and cell division J Exp Med Articles Cell division during thymic selection was studied with a system in which purified populations of T cell antigen receptor (TCR)- CD4+8+ (double-positive [DP]) cells and fetal thymic epithelial cells (TEC) were reaggregated in tissue culture. In this system, immature DP cells differentiate into mature single-positive (SP) CD4+8- and CD4-8+ TCRhi cells within 3-4 d, indicative of positive selection. By adding the DNA precursor, bromodeoxyuridine, to the cultures and staining cells for bromodeoxyuridine incorporation, T cell division in reaggregation cultures was found to be high on day 1, low on day 2, and high on days 4-5. Cell separation studies established that cell division on day 1 was restricted to DP blast cells. In the absence of blast cells, small DP cells failed to proliferate and differentiated into SP cells without cell division, thus indicating that proliferation is not an essential component of positive selection. This applied to SP cells generated within the first 2-3 d. Surprisingly, the SP cells generated later in culture showed a high rate of cell division; the proliferating SP cells were TCRhi and included both CD4+8- and CD4-8+ cells. Turnover of TCRhi SP cells was also prominent in the normal neonatal thymus and in TEC reaggregation cultures prepared with adult lymph node T cells. We speculate that division of mature SP cells in the perinatal thymic microenvironment is driven by stimulatory cytokines released from TEC. Such proliferation could be a device to expand the mature T cell repertoire before export to the periphery. The Rockefeller University Press 1995-10-01 /pmc/articles/PMC2192303/ /pubmed/7561699 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Thymic selection and cell division |
title | Thymic selection and cell division |
title_full | Thymic selection and cell division |
title_fullStr | Thymic selection and cell division |
title_full_unstemmed | Thymic selection and cell division |
title_short | Thymic selection and cell division |
title_sort | thymic selection and cell division |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192303/ https://www.ncbi.nlm.nih.gov/pubmed/7561699 |