Cargando…

Immunoglobulin recombinase gene activity is modulated reciprocally by interleukin 7 and CD19 in B cell progenitors

Bone marrow stromal cells promote B cell development involving recombinase gene-directed rearrangement of the immunoglobulin genes. We observed that the stromal cell-derived cytokine interleukin 7 (IL-7) enhances the expression of CD19 molecules on progenitor B-lineage cells in human bone marrow sam...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192306/
https://www.ncbi.nlm.nih.gov/pubmed/7561700
Descripción
Sumario:Bone marrow stromal cells promote B cell development involving recombinase gene-directed rearrangement of the immunoglobulin genes. We observed that the stromal cell-derived cytokine interleukin 7 (IL-7) enhances the expression of CD19 molecules on progenitor B-lineage cells in human bone marrow samples and downregulates the expression of terminal deoxynucleotidyl transferase (TdT) and the recombinase- activating genes RAG-1 and RAG-2. Initiation of the TdT downregulation on the first day of treatment, CD19 upregulation during the second day, and RAG-1 and RAG-2 downmodulation during the third day implied a cascade of IL-7 effects. While CD19 ligation by divalent antibodies had no direct effect on TdT or RAG gene expression, CD19 cross-linkage complete blocked the IL-7 downregulation of RAG expression without affecting the earlier TdT response. These results suggest that signals generated through CD19 and the IL-7 receptor could modulate immunoglobulin gene rearrangement and repertoire diversification during the early stages of B cell differentiation.