Cargando…
Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils
Macrophage activation is deficient in the fetus and neonate when the serum concentrations of docosahexaenoic acid (DHA) are 150 microM, or 10-50-fold higher than in the adult. We now show that DHA inhibits production of nitric oxide (NO) by macrophages stimulated in vitro by IFNgamma plus LPS, or by...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192332/ https://www.ncbi.nlm.nih.gov/pubmed/8642266 |
_version_ | 1782147215085535232 |
---|---|
collection | PubMed |
description | Macrophage activation is deficient in the fetus and neonate when the serum concentrations of docosahexaenoic acid (DHA) are 150 microM, or 10-50-fold higher than in the adult. We now show that DHA inhibits production of nitric oxide (NO) by macrophages stimulated in vitro by IFNgamma plus LPS, or by IFNgamma plus TNFalpha. The half-maximal inhibitory activity of DHA was approximately 25 microM. There were strict biochemical requirements of the fatty acid for inhibition. Polyenoic fatty acids with 22 carbons were more inhibitory than those with 20 carbons. Among 22-carbon fatty acids, those with a greater number of double bonds and a double bond in the n-3 position were more inhibitory. DHA was the most inhibitory of the polyenoic acids we tested. Inducible nitric oxide synthase (iNOS) is the enzyme responsible for the production of NO by macrophages. NO production is initiated after new iNOS enzyme is synthesized following transcription of the iNOS gene. In macrophages stimulated by IFNgamma plus LPS, DHA inhibited accumulation of iNOS mRNA, as measured by Northern blotting, and iNOS transcription, as measured by nuclear run-on assays. We transfected RAW 264.7 macrophages with a construct containing the iNOS promoter fused to the chloramphenicol acetyl transferase gene. DHA inhibited activation of this promoter by IFN gamma plus LPS. By inhibiting iNOS transcription in the fetus and neonate, DHA may contribute to their increased susceptibility to infection. |
format | Text |
id | pubmed-2192332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1996 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21923322008-04-16 Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils J Exp Med Articles Macrophage activation is deficient in the fetus and neonate when the serum concentrations of docosahexaenoic acid (DHA) are 150 microM, or 10-50-fold higher than in the adult. We now show that DHA inhibits production of nitric oxide (NO) by macrophages stimulated in vitro by IFNgamma plus LPS, or by IFNgamma plus TNFalpha. The half-maximal inhibitory activity of DHA was approximately 25 microM. There were strict biochemical requirements of the fatty acid for inhibition. Polyenoic fatty acids with 22 carbons were more inhibitory than those with 20 carbons. Among 22-carbon fatty acids, those with a greater number of double bonds and a double bond in the n-3 position were more inhibitory. DHA was the most inhibitory of the polyenoic acids we tested. Inducible nitric oxide synthase (iNOS) is the enzyme responsible for the production of NO by macrophages. NO production is initiated after new iNOS enzyme is synthesized following transcription of the iNOS gene. In macrophages stimulated by IFNgamma plus LPS, DHA inhibited accumulation of iNOS mRNA, as measured by Northern blotting, and iNOS transcription, as measured by nuclear run-on assays. We transfected RAW 264.7 macrophages with a construct containing the iNOS promoter fused to the chloramphenicol acetyl transferase gene. DHA inhibited activation of this promoter by IFN gamma plus LPS. By inhibiting iNOS transcription in the fetus and neonate, DHA may contribute to their increased susceptibility to infection. The Rockefeller University Press 1996-03-01 /pmc/articles/PMC2192332/ /pubmed/8642266 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
title | Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
title_full | Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
title_fullStr | Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
title_full_unstemmed | Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
title_short | Transcription of the murine iNOS gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
title_sort | transcription of the murine inos gene is inhibited by docosahexaenoic acid, a major constituent of fetal and neonatal sera as well as fish oils |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192332/ https://www.ncbi.nlm.nih.gov/pubmed/8642266 |