Cargando…
B and T cells are not required for the viable motheaten phenotype
Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulatin...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192436/ https://www.ncbi.nlm.nih.gov/pubmed/8627150 |
_version_ | 1782147239479607296 |
---|---|
collection | PubMed |
description | Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulating protein function, it is not surprising that the motheaten phenotype is pleiotropic. It is commonly thought that immune system involvement causes this disease. If so, the motheaten disease ought to be alleviated when the recombination activation gene-1 (RAG-1) is disrupted because there will be no V(D)J rearrangement and thus impaired development of B and T cells. We bred homozygous, double- mutant me(v)/me(v) x RAG 1 -/- mice and found that, in fact, inflamed paws, and splenomegaly with elevated myelopoiesis. Thus, except for autoantibodies, the motheaten phenotype does not depend on the presence of B and T cells. This observation cautions the use of motheaten mice as a model of autoimmune disease. |
format | Text |
id | pubmed-2192436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1996 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21924362008-04-16 B and T cells are not required for the viable motheaten phenotype J Exp Med Articles Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulating protein function, it is not surprising that the motheaten phenotype is pleiotropic. It is commonly thought that immune system involvement causes this disease. If so, the motheaten disease ought to be alleviated when the recombination activation gene-1 (RAG-1) is disrupted because there will be no V(D)J rearrangement and thus impaired development of B and T cells. We bred homozygous, double- mutant me(v)/me(v) x RAG 1 -/- mice and found that, in fact, inflamed paws, and splenomegaly with elevated myelopoiesis. Thus, except for autoantibodies, the motheaten phenotype does not depend on the presence of B and T cells. This observation cautions the use of motheaten mice as a model of autoimmune disease. The Rockefeller University Press 1996-02-01 /pmc/articles/PMC2192436/ /pubmed/8627150 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles B and T cells are not required for the viable motheaten phenotype |
title | B and T cells are not required for the viable motheaten phenotype |
title_full | B and T cells are not required for the viable motheaten phenotype |
title_fullStr | B and T cells are not required for the viable motheaten phenotype |
title_full_unstemmed | B and T cells are not required for the viable motheaten phenotype |
title_short | B and T cells are not required for the viable motheaten phenotype |
title_sort | b and t cells are not required for the viable motheaten phenotype |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192436/ https://www.ncbi.nlm.nih.gov/pubmed/8627150 |