Cargando…

B and T cells are not required for the viable motheaten phenotype

Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulatin...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192436/
https://www.ncbi.nlm.nih.gov/pubmed/8627150
_version_ 1782147239479607296
collection PubMed
description Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulating protein function, it is not surprising that the motheaten phenotype is pleiotropic. It is commonly thought that immune system involvement causes this disease. If so, the motheaten disease ought to be alleviated when the recombination activation gene-1 (RAG-1) is disrupted because there will be no V(D)J rearrangement and thus impaired development of B and T cells. We bred homozygous, double- mutant me(v)/me(v) x RAG 1 -/- mice and found that, in fact, inflamed paws, and splenomegaly with elevated myelopoiesis. Thus, except for autoantibodies, the motheaten phenotype does not depend on the presence of B and T cells. This observation cautions the use of motheaten mice as a model of autoimmune disease.
format Text
id pubmed-2192436
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21924362008-04-16 B and T cells are not required for the viable motheaten phenotype J Exp Med Articles Hematopoietic cell phosphatase (HCP), encoded by the hcph gene, (also called PTP1C, SHP, SH-PTP1, and PTPN6) is deficient in motheaten (me/me), and the allelic viable motheaten (me(v)/me(v)) mice. Since HCP is expressed in many cell types and protein phosphorylation is a major mechanism of regulating protein function, it is not surprising that the motheaten phenotype is pleiotropic. It is commonly thought that immune system involvement causes this disease. If so, the motheaten disease ought to be alleviated when the recombination activation gene-1 (RAG-1) is disrupted because there will be no V(D)J rearrangement and thus impaired development of B and T cells. We bred homozygous, double- mutant me(v)/me(v) x RAG 1 -/- mice and found that, in fact, inflamed paws, and splenomegaly with elevated myelopoiesis. Thus, except for autoantibodies, the motheaten phenotype does not depend on the presence of B and T cells. This observation cautions the use of motheaten mice as a model of autoimmune disease. The Rockefeller University Press 1996-02-01 /pmc/articles/PMC2192436/ /pubmed/8627150 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
B and T cells are not required for the viable motheaten phenotype
title B and T cells are not required for the viable motheaten phenotype
title_full B and T cells are not required for the viable motheaten phenotype
title_fullStr B and T cells are not required for the viable motheaten phenotype
title_full_unstemmed B and T cells are not required for the viable motheaten phenotype
title_short B and T cells are not required for the viable motheaten phenotype
title_sort b and t cells are not required for the viable motheaten phenotype
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192436/
https://www.ncbi.nlm.nih.gov/pubmed/8627150