Cargando…

HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family

Synthetic peptides corresponding to sequences of HLA class I molecules have inhibitory effects on T cell function. The peptides investigated in this study have sequences corresponding to the relatively conserved region of the alpha 1 helix of HLA class I molecules that overlaps the "public epit...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192466/
https://www.ncbi.nlm.nih.gov/pubmed/8627147
_version_ 1782147246573223936
collection PubMed
description Synthetic peptides corresponding to sequences of HLA class I molecules have inhibitory effects on T cell function. The peptides investigated in this study have sequences corresponding to the relatively conserved region of the alpha 1 helix of HLA class I molecules that overlaps the "public epitope" Bw4/Bw6. These HLA-derived peptides exhibit inhibitory effects on T lymphocytes and have beneficial effects on the survival of allogenic organ transplants in mice and rats. Peptides corresponding to the Bw4a epitope appear most potent as they inhibit the differentiation of T cell precursors into mature cytotoxic T lymphocytes (CTL) and target cell lysis by established CTL lines and clones. To elucidate the mechanism through which these peptides mediate their inhibitory effect on T lymphocytes, peptide binding proteins were isolated from T cell lysates. We show that the inhibitory Bw4a peptide binds two members of the heat-shock protein (HSP) 70 family, constitutively expressed HSC70 and heat-inducible HSP70. Peptide binding to HSC/HSP70 is sequence specific and follows the rules defined by the HSC70 binding motif. Most intriguing, however, is the strict correlation of peptide binding to HSC/HSP70 and the functional effects such that only inhibitory peptides bind to HSC70 and HSP70 whereas noninhibitory peptides do not bind. This correlation suggests that small molecular weight HLA-derived peptides may modulate T cell responses by directly interacting with HSPs. In contrast to numerous reports of HSP70 expression at the surface of antigen-presenting cells and some tumor cells, we find no evidence that HSC/HSP70 are expressed at the surface of the affected T cells. Therefore, we believe that the peptides' immunodulatory effects are not mediated through a signaling event initiated by interaction of peptide with surface HSP, but favor a model similar to the action of other immunomodulatory compounds, FK506 and cyclosporin A, with a role for HSC/HSP70 similar to that for immunophilins, FKBPs and CyP40.
format Text
id pubmed-2192466
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21924662008-04-16 HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family J Exp Med Articles Synthetic peptides corresponding to sequences of HLA class I molecules have inhibitory effects on T cell function. The peptides investigated in this study have sequences corresponding to the relatively conserved region of the alpha 1 helix of HLA class I molecules that overlaps the "public epitope" Bw4/Bw6. These HLA-derived peptides exhibit inhibitory effects on T lymphocytes and have beneficial effects on the survival of allogenic organ transplants in mice and rats. Peptides corresponding to the Bw4a epitope appear most potent as they inhibit the differentiation of T cell precursors into mature cytotoxic T lymphocytes (CTL) and target cell lysis by established CTL lines and clones. To elucidate the mechanism through which these peptides mediate their inhibitory effect on T lymphocytes, peptide binding proteins were isolated from T cell lysates. We show that the inhibitory Bw4a peptide binds two members of the heat-shock protein (HSP) 70 family, constitutively expressed HSC70 and heat-inducible HSP70. Peptide binding to HSC/HSP70 is sequence specific and follows the rules defined by the HSC70 binding motif. Most intriguing, however, is the strict correlation of peptide binding to HSC/HSP70 and the functional effects such that only inhibitory peptides bind to HSC70 and HSP70 whereas noninhibitory peptides do not bind. This correlation suggests that small molecular weight HLA-derived peptides may modulate T cell responses by directly interacting with HSPs. In contrast to numerous reports of HSP70 expression at the surface of antigen-presenting cells and some tumor cells, we find no evidence that HSC/HSP70 are expressed at the surface of the affected T cells. Therefore, we believe that the peptides' immunodulatory effects are not mediated through a signaling event initiated by interaction of peptide with surface HSP, but favor a model similar to the action of other immunomodulatory compounds, FK506 and cyclosporin A, with a role for HSC/HSP70 similar to that for immunophilins, FKBPs and CyP40. The Rockefeller University Press 1996-02-01 /pmc/articles/PMC2192466/ /pubmed/8627147 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family
title HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family
title_full HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family
title_fullStr HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family
title_full_unstemmed HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family
title_short HLA-derived peptides which inhibit T cell function bind to members of the heat-shock protein 70 family
title_sort hla-derived peptides which inhibit t cell function bind to members of the heat-shock protein 70 family
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192466/
https://www.ncbi.nlm.nih.gov/pubmed/8627147