Cargando…

Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo

Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughout the lifetime of the animal. While experimenting with staining of murine bone marrow cells with the vital dye, Hoechst 33342, we discovered that display of Hoe...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192511/
https://www.ncbi.nlm.nih.gov/pubmed/8666936
_version_ 1782147257173278720
collection PubMed
description Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughout the lifetime of the animal. While experimenting with staining of murine bone marrow cells with the vital dye, Hoechst 33342, we discovered that display of Hoechst fluorescence simultaneously at two emission wavelengths revealed a small and distinct subset of whole bone marrow cells that had phenotypic markers of multipotential HSC. These cells were shown in competitive repopulation experiments to contain the vast majority of HSC activity from murine bone marrow and to be enriched at least 1,000-fold for in vivo reconstitution activity. Further, these Hoechst-stained side population (SP) cells were shown to protect recipients from lethal irradiation at low cell doses, and to contribute to both lymphoid and myeloid lineages. The formation of the Hoechst SP profile was blocked when staining was performed in the presence of verapamil, indicating that the distinctly low staining pattern of the SP cells is due to a multidrug resistance protein (mdr) or mdr-like mediated efflux of the dye from HSC. The ability to block the Hoechst efflux activity also allowed us to use Hoechst to determine the DNA content of the SP cells. Between 1 and 3% of the HSC were shown to be in S-G2M. This also enabled the purification of the G0-G1 and S-G2M HSC had a reconstitution capacity equivalent to quiescent stem cells. These findings have implications for models of hematopoietic cell development and for the development of genetic therapies for diseases involving hematopoietic cells.
format Text
id pubmed-2192511
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21925112008-04-16 Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo J Exp Med Articles Hematopoietic stem cells (HSC) are multipotent cells that reside in the bone marrow and replenish all adult hematopoietic lineages throughout the lifetime of the animal. While experimenting with staining of murine bone marrow cells with the vital dye, Hoechst 33342, we discovered that display of Hoechst fluorescence simultaneously at two emission wavelengths revealed a small and distinct subset of whole bone marrow cells that had phenotypic markers of multipotential HSC. These cells were shown in competitive repopulation experiments to contain the vast majority of HSC activity from murine bone marrow and to be enriched at least 1,000-fold for in vivo reconstitution activity. Further, these Hoechst-stained side population (SP) cells were shown to protect recipients from lethal irradiation at low cell doses, and to contribute to both lymphoid and myeloid lineages. The formation of the Hoechst SP profile was blocked when staining was performed in the presence of verapamil, indicating that the distinctly low staining pattern of the SP cells is due to a multidrug resistance protein (mdr) or mdr-like mediated efflux of the dye from HSC. The ability to block the Hoechst efflux activity also allowed us to use Hoechst to determine the DNA content of the SP cells. Between 1 and 3% of the HSC were shown to be in S-G2M. This also enabled the purification of the G0-G1 and S-G2M HSC had a reconstitution capacity equivalent to quiescent stem cells. These findings have implications for models of hematopoietic cell development and for the development of genetic therapies for diseases involving hematopoietic cells. The Rockefeller University Press 1996-04-01 /pmc/articles/PMC2192511/ /pubmed/8666936 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
title Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
title_full Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
title_fullStr Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
title_full_unstemmed Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
title_short Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
title_sort isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192511/
https://www.ncbi.nlm.nih.gov/pubmed/8666936