Cargando…

The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB

Opportunistic infections, such as aspergillosis, are among the most serious complications suffered by immunocompromised patients. Aspergillus fumigatus and other pathogenic fungi synthesize a toxic epipolythiodioxopiperazine metabolite called gliotoxin. Gliotoxin exhibits profound immunosuppressive...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192527/
https://www.ncbi.nlm.nih.gov/pubmed/8666939
_version_ 1782147260935569408
collection PubMed
description Opportunistic infections, such as aspergillosis, are among the most serious complications suffered by immunocompromised patients. Aspergillus fumigatus and other pathogenic fungi synthesize a toxic epipolythiodioxopiperazine metabolite called gliotoxin. Gliotoxin exhibits profound immunosuppressive activity in vivo. It induces apoptosis in thymocytes, splenocytes, and mesenteric lymph node cells and can selectively deplete bone marrow of mature lymphocytes. The molecular mechanism by which gliotoxin exerts these effects remains unknown. Here, we report that nanomolar concentrations of gliotoxin inhibited the activation of transcription factor NF-kappaB in response to a variety of stimuli in T and B cells. The effect of gliotoxin was specific because, at the same concentrations, the toxin did not affect activation of the transcription factor NF-AT or of interferon- responsive signal transducers and activators of transcription. Likewise, the activity of the constitutively DNA-binding transcription factors Oct-1 and cyclic AMP response element binding protein (CREB), as well as the activation of protein tyrosine kinases p56lck and p59fyn, was not altered by gliotoxin. Very high concentrations of gliotoxin prevented NF-kappaB DNA binding in vitro. However, in intact cells, inhibition of NF-kappaB did not occur at the level of DNA binding; rather, the toxin appeared to prevent degradation of IkappaB- alpha, NF-kappaB's inhibitory subunit. Our data raise the possibility that the immunosuppression observed during aspergillosis results in part from gliotoxin-mediated NF-kappaB inhibition.
format Text
id pubmed-2192527
institution National Center for Biotechnology Information
language English
publishDate 1996
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21925272008-04-16 The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB J Exp Med Articles Opportunistic infections, such as aspergillosis, are among the most serious complications suffered by immunocompromised patients. Aspergillus fumigatus and other pathogenic fungi synthesize a toxic epipolythiodioxopiperazine metabolite called gliotoxin. Gliotoxin exhibits profound immunosuppressive activity in vivo. It induces apoptosis in thymocytes, splenocytes, and mesenteric lymph node cells and can selectively deplete bone marrow of mature lymphocytes. The molecular mechanism by which gliotoxin exerts these effects remains unknown. Here, we report that nanomolar concentrations of gliotoxin inhibited the activation of transcription factor NF-kappaB in response to a variety of stimuli in T and B cells. The effect of gliotoxin was specific because, at the same concentrations, the toxin did not affect activation of the transcription factor NF-AT or of interferon- responsive signal transducers and activators of transcription. Likewise, the activity of the constitutively DNA-binding transcription factors Oct-1 and cyclic AMP response element binding protein (CREB), as well as the activation of protein tyrosine kinases p56lck and p59fyn, was not altered by gliotoxin. Very high concentrations of gliotoxin prevented NF-kappaB DNA binding in vitro. However, in intact cells, inhibition of NF-kappaB did not occur at the level of DNA binding; rather, the toxin appeared to prevent degradation of IkappaB- alpha, NF-kappaB's inhibitory subunit. Our data raise the possibility that the immunosuppression observed during aspergillosis results in part from gliotoxin-mediated NF-kappaB inhibition. The Rockefeller University Press 1996-04-01 /pmc/articles/PMC2192527/ /pubmed/8666939 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB
title The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB
title_full The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB
title_fullStr The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB
title_full_unstemmed The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB
title_short The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB
title_sort immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor nf-kappab
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192527/
https://www.ncbi.nlm.nih.gov/pubmed/8666939