Cargando…
Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma
Interferon (IFN) gamma induces replacements of the proteasomal subunits X and Y by LMP7 and LMP2, respectively, resulting in an alteration of the proteolytic specificity. We found a third pair of proteasome subunits expressed reciprocally in response to IFN-gamma. Molecular cloning of a cDNA encodin...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192534/ https://www.ncbi.nlm.nih.gov/pubmed/8666937 |
Sumario: | Interferon (IFN) gamma induces replacements of the proteasomal subunits X and Y by LMP7 and LMP2, respectively, resulting in an alteration of the proteolytic specificity. We found a third pair of proteasome subunits expressed reciprocally in response to IFN-gamma. Molecular cloning of a cDNA encoding one subunit designated as Z, downregulated by IFN-gamma, showed that it is a novel proteasomal subunit with high homology to MECL1, which is markedly induced by IFN-gamma. Thus, IFN- gamma induces subunit replacements of not only X and Y by LMP7 and LMP2, respectively, but also of Z by MECL1, producing proteasomes responsible for immunological processing of endogenous antigens. When processed from their precursors, three pairs of the 10 homologous, but distinct, beta-type subunits of eukaryotic proteasomes, that is, X/LMP7, Y/LMP2, and Z/MECL1, have an NH2-terminal threonine residue, assumed to be part of a catalytic center. These findings suggest that the altered molecular organization of the proteasome induced by IFN- gamma may be responsible for acquisition of its functional change. |
---|