Cargando…
Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils
The chemokine eotaxin is unusual in that it appears to be a highly specific chemoattractant for eosinophils. Ligand-binding studies with radiolabeled eotaxin demonstrated a receptor on eosinophils distinct from the known chemokine receptors CKR-1 and -2. The distinct eotaxin binding site on human eo...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1996
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192612/ https://www.ncbi.nlm.nih.gov/pubmed/8676064 |
Sumario: | The chemokine eotaxin is unusual in that it appears to be a highly specific chemoattractant for eosinophils. Ligand-binding studies with radiolabeled eotaxin demonstrated a receptor on eosinophils distinct from the known chemokine receptors CKR-1 and -2. The distinct eotaxin binding site on human eosinophils also bound RANTES (regulated on activation T expressed and secreted) and monocyte chemotactic protein (MCP)3. We have now isolated a cDNA from eosinophils, termed CKR-3, with significant sequence similarity to other well characterized chemokine receptors. Cells transfected with CKR-3 cDNA bound radiolabeled eotaxin specifically and with high affinity, comparable to the binding affinity observed with eosinophils. This receptor also bound RANTES and MCP-3 with high affinity, but not other CC or CXC chemokines. Furthermore, receptor transfectants generated in a murine B cell lymphoma cell line migrated in transwell chemotaxis assays to eotaxin, RANTES, and MCP-3, but not to any other chemokines. A monoclonal antibody recognizing CKR-3 was used to show that eosinophils, but not other leukocyte types, expressed this receptor. This pattern of expression was confirmed by Northern blot with RNA from highly purified leukocyte subsets. The restricted expression of CKR-3 on eosinophils and the fidelity of eotaxin binding to CKR-3, provides a potential mechanism for the selective recruitment and migration of eosinophils within tissues. |
---|