Cargando…

Identification of a heparin-binding hemagglutinin present in mycobacteria

Adherence to mammalian host tissues is an important virulence trait in microbial pathogenesis, yet little is known about the adherence mechanisms of mycobacteria. Here, we show that binding of mycobacteria to epithelial cells but not to macrophages can be specifically inhibited by sulfated carbohydr...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1996
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2192777/
https://www.ncbi.nlm.nih.gov/pubmed/9064359
Descripción
Sumario:Adherence to mammalian host tissues is an important virulence trait in microbial pathogenesis, yet little is known about the adherence mechanisms of mycobacteria. Here, we show that binding of mycobacteria to epithelial cells but not to macrophages can be specifically inhibited by sulfated carbohydrates. Using heparin-Sepharose chromatography, a 28-kD heparin-binding protein was purified from culture supernatants and cell extracts of Mycobacterium bovis and Mycobacterium tuberculosis. This protein, designated heparin-binding hemagglutinin (HBHA), promotes the agglutination of rabbit erythrocytes, which is specifically inhibited by sulfated carbohydrates. HBHA also induce mycobacterial aggregation, suggesting that it can mediate bacteria-bacteria interactions as well. Hemagglutination, mycobacterial aggregation, as well as attachment to epithelial cells are specifically inhibited in the presence of anti- HBHA antibodies. Immunoelectron microscopy using anti-HBHA monoclonal antibodies revealed that the protein is surface exposed, consistent with a role in adherence. Immunoblot analyses using antigen-specific antibodies indicated that HBHA is different from the fibronectin- binding proteins of the antigen 85 complex and p55, and comparison of the NH2-terminal amino acid sequence of purified HBHA with the protein sequence data bases did not reveal any significant similarity with other known proteins. Sera from tuberculosis patients but not from healthy individuals were found to recognize HBHA, indicating its immunogenicity in humans during mycobacterial infections. Identification of putative mycobacterial adhesins, such as the one described in this report, may provide the basis for the development of new therapeutic and prophylactic strategies against mycobacterial diseases.