Cargando…
Microbial Epitopes Act as Altered Peptide Ligands to Prevent Experimental Autoimmune Encephalomyelitis
Molecular mimicry refers to structural homologies between a self-protein and a microbial protein. A major epitope of myelin basic protein (MBP), p87–99 (VHFFKNIVTPRTP), induces experimental autoimmune encephalomyelitis (EAE). VHFFK contains the major residues for binding of this self-molecule to T c...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1999
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193020/ https://www.ncbi.nlm.nih.gov/pubmed/10209044 |
Sumario: | Molecular mimicry refers to structural homologies between a self-protein and a microbial protein. A major epitope of myelin basic protein (MBP), p87–99 (VHFFKNIVTPRTP), induces experimental autoimmune encephalomyelitis (EAE). VHFFK contains the major residues for binding of this self-molecule to T cell receptor (TCR) and to the major histocompatibility complex. Peptides from papilloma virus strains containing the motif VHFFK induce EAE. A peptide from human papilloma virus type 40 (HPV 40) containing VHFFR, and one from HPV 32 containing VHFFH, prevented EAE. A sequence from Bacillus subtilis (RKVVTDFFKNIPQRI) also prevented EAE. T cell lines, producing IL-4 and specific for these microbial peptides, suppressed EAE. Thus, microbial peptides, differing from the core motif of the self-antigen, MBPp87–99, function as altered peptide ligands, and behave as TCR antagonists, in the modulation of autoimmune disease. |
---|