Cargando…

Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors

Conserved differences between the transmembrane and cytoplasmic domains of membrane immunoglobulin (Ig)M and IgG may alter the function of antigen receptors on naive versus memory B cells. Here, we compare the ability of these domains to signal B cell allelic exclusion and maturation in transgenic m...

Descripción completa

Detalles Bibliográficos
Autores principales: Pogue, Sarah L., Goodnow, Christopher C.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193121/
https://www.ncbi.nlm.nih.gov/pubmed/10727464
_version_ 1782147396117987328
author Pogue, Sarah L.
Goodnow, Christopher C.
author_facet Pogue, Sarah L.
Goodnow, Christopher C.
author_sort Pogue, Sarah L.
collection PubMed
description Conserved differences between the transmembrane and cytoplasmic domains of membrane immunoglobulin (Ig)M and IgG may alter the function of antigen receptors on naive versus memory B cells. Here, we compare the ability of these domains to signal B cell allelic exclusion and maturation in transgenic mice. A lysozyme-binding antibody was expressed in parallel sets of mice as IgM, IgG1, or a chimeric receptor with IgM extracellular domains and transmembrane/cytoplasmic domains of IgG1. Like IgM, the IgG1 or chimeric IgM/G receptors triggered heavy chain allelic exclusion and supported development of mature CD21(+) B cells. Many of the IgG or IgM/G B cells became CD21(high) and downregulated their IgG and IgM/G receptors spontaneously, resembling memory B cells and B cells with mutations that exaggerate B cell antigen receptor signaling. Unlike IgM-transgenic mice, “edited” B cells that carry non–hen egg lysozyme binding receptors preferentially accumulated in IgG and IgM/G mice. This was most extreme in lines with the highest transgene copy number and diminished in variant offspring with fewer copies. The sensitivity of B cell maturation to transgene copy number conferred by the IgG transmembrane and cytoplasmic domains may explain the diverse phenotypes found in other IgG-transgenic mouse strains and may reflect exaggerated signaling.
format Text
id pubmed-2193121
institution National Center for Biotechnology Information
language English
publishDate 2000
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21931212008-04-16 Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors Pogue, Sarah L. Goodnow, Christopher C. J Exp Med Original Article Conserved differences between the transmembrane and cytoplasmic domains of membrane immunoglobulin (Ig)M and IgG may alter the function of antigen receptors on naive versus memory B cells. Here, we compare the ability of these domains to signal B cell allelic exclusion and maturation in transgenic mice. A lysozyme-binding antibody was expressed in parallel sets of mice as IgM, IgG1, or a chimeric receptor with IgM extracellular domains and transmembrane/cytoplasmic domains of IgG1. Like IgM, the IgG1 or chimeric IgM/G receptors triggered heavy chain allelic exclusion and supported development of mature CD21(+) B cells. Many of the IgG or IgM/G B cells became CD21(high) and downregulated their IgG and IgM/G receptors spontaneously, resembling memory B cells and B cells with mutations that exaggerate B cell antigen receptor signaling. Unlike IgM-transgenic mice, “edited” B cells that carry non–hen egg lysozyme binding receptors preferentially accumulated in IgG and IgM/G mice. This was most extreme in lines with the highest transgene copy number and diminished in variant offspring with fewer copies. The sensitivity of B cell maturation to transgene copy number conferred by the IgG transmembrane and cytoplasmic domains may explain the diverse phenotypes found in other IgG-transgenic mouse strains and may reflect exaggerated signaling. The Rockefeller University Press 2000-03-20 /pmc/articles/PMC2193121/ /pubmed/10727464 Text en © 2000 The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Original Article
Pogue, Sarah L.
Goodnow, Christopher C.
Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors
title Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors
title_full Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors
title_fullStr Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors
title_full_unstemmed Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors
title_short Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors
title_sort gene dose–dependent maturation and receptor editing of b cells expressing immunoglobulin (ig)g1 or igm/igg1 tail antigen receptors
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193121/
https://www.ncbi.nlm.nih.gov/pubmed/10727464
work_keys_str_mv AT poguesarahl genedosedependentmaturationandreceptoreditingofbcellsexpressingimmunoglobulinigg1origmigg1tailantigenreceptors
AT goodnowchristopherc genedosedependentmaturationandreceptoreditingofbcellsexpressingimmunoglobulinigg1origmigg1tailantigenreceptors