Cargando…

Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma

Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Mattes, Joerg, Yang, Ming, Mahalingam, Surendran, Kuehr, Joachim, Webb, Dianne C., Simson, Ljubov, Hogan, Simon P., Koskinen, Aulikki, McKenzie, Andrew N.J., Dent, Lindsay A., Rothenberg, Marc E., Matthaei, Klaus I., Young, Ian G., Foster, Paul S.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193548/
https://www.ncbi.nlm.nih.gov/pubmed/12045241
http://dx.doi.org/10.1084/jem.20020009
Descripción
Sumario:Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti–IL-5 or anti–IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin(−/−)) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4(+) T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin(−/−) mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease.