Cargando…
Matrix Metalloproteinases (MMPs) Regulate Fibrin-invasive Activity via MT1-MMP–dependent and –independent Processes
Cross-linked fibrin is deposited in tissues surrounding wounds, inflammatory sites, or tumors and serves not only as a supporting substratum for trafficking cells, but also as a structural barrier to invasion. While the plasminogen activator-plasminogen axis provides cells with a powerful fibrinolyt...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193588/ https://www.ncbi.nlm.nih.gov/pubmed/11828004 http://dx.doi.org/10.1084/jem.20010815 |
Sumario: | Cross-linked fibrin is deposited in tissues surrounding wounds, inflammatory sites, or tumors and serves not only as a supporting substratum for trafficking cells, but also as a structural barrier to invasion. While the plasminogen activator-plasminogen axis provides cells with a powerful fibrinolytic system, plasminogen-deleted animals use alternate proteolytic processes that allow fibrin invasion to proceed normally. Using fibroblasts recovered from wild-type or gene-deleted mice, invasion of three-dimensional fibrin gels proceeded in a matrix metalloproteinase (MMP)-dependent fashion. Consistent with earlier studies supporting a singular role for the membrane-anchored MMP, MT1-MMP, in fibrin-invasive events, fibroblasts from MT1-MMP–null mice displayed an early defect in invasion. However, MT1-MMP–deleted fibroblasts circumvented this early deficiency and exhibited compensatory fibrin-invasive activity. The MT1-MMP–independent process was sensitive to MMP inhibitors that target membrane-anchored MMPs, and further studies identified MT2-MMP and MT3-MMP, but not MT4-MMP, as alternate pro-invasive factors. Given the widespread distribution of MT1-, 2-, and 3-MMP in normal and neoplastic cells, these data identify a subset of membrane-anchored MMPs that operate in an autonomous fashion to drive fibrin-invasive activity. |
---|