Cargando…

The Mechanism and Significance of Deletion of Parasite-specific CD4(+) T Cells in Malaria Infection

It is thought that both helper and effector functions of CD4(+) T cells contribute to protective immunity to blood stage malaria infection. However, malaria infection does not induce long-term immunity and its mechanisms are not defined. In this study, we show that protective parasite-specific CD4(+...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Huji, Wipasa, Jiraprapa, Yan, Huaru, Zeng, Ming, Makobongo, Morris O., Finkelman, Fred D., Kelso, Anne, Good, Michael F.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193727/
https://www.ncbi.nlm.nih.gov/pubmed/11927632
http://dx.doi.org/10.1084/jem.20011174
Descripción
Sumario:It is thought that both helper and effector functions of CD4(+) T cells contribute to protective immunity to blood stage malaria infection. However, malaria infection does not induce long-term immunity and its mechanisms are not defined. In this study, we show that protective parasite-specific CD4(+) T cells were depleted after infection with both lethal and nonlethal species of rodent Plasmodium. It is further shown that the depletion is confined to parasite-specific T cells because (a) ovalbumin (OVA)-specific CD4(+) T cells are not depleted after either malaria infection or direct OVA antigen challenge, and (b) the depletion of parasite-specific T cells during infection does not kill bystander OVA-specific T cells. A significant consequence of the depletion of malaria parasite–specific CD4(+) T cells is impaired immunity, demonstrated in mice that were less able to control parasitemia after depletion of transferred parasite-specific T cells. Using tumor necrosis factor (TNF)-RI knockout– and Fas-deficient mice, we demonstrate that the depletion of parasite-specific CD4(+) T cells is not via TNF or Fas pathways. However, in vivo administration of anti–interferon (IFN)-γ antibody blocks depletion, suggesting that IFN-γ is involved in the process. Taken together, these data suggest that long-term immunity to malaria infection may be affected by an IFN-γ–mediated depletion of parasite-specific CD4(+) T cells during infection. This study provides further insight into the nature of immunity to malaria and may have a significant impact on approaches taken to develop a malaria vaccine.