Cargando…

Toll-like Receptor 4 Resides in the Golgi Apparatus and Colocalizes with Internalized Lipopolysaccharide in Intestinal Epithelial Cells

Toll-like receptor (TLR) 4 is mainly found on cells of the myelopoietic lineage. It recognizes lipopolysaccharide (LPS) and mediates cellular activation and production of proinflammatory cytokines. Less is known about the distribution and role of TLR4 in epithelial cells that are continuously expose...

Descripción completa

Detalles Bibliográficos
Autores principales: Hornef, Mathias W., Frisan, Teresa, Vandewalle, Alain, Normark, Staffan, Richter-Dahlfors, Agneta
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193765/
https://www.ncbi.nlm.nih.gov/pubmed/11877479
http://dx.doi.org/10.1084/jem.20011788
Descripción
Sumario:Toll-like receptor (TLR) 4 is mainly found on cells of the myelopoietic lineage. It recognizes lipopolysaccharide (LPS) and mediates cellular activation and production of proinflammatory cytokines. Less is known about the distribution and role of TLR4 in epithelial cells that are continuously exposed to microbes and microbial products. Here we show that the murine small intestinal epithelial cell line m-IC(cl2) is highly responsive to LPS and expresses both CD14 and TLR4. Transcription and surface membrane staining for CD14 were up-regulated upon LPS exposure. Surprisingly, TLR4 immunostaining revealed a strictly cytoplasmic paranuclear distribution. This paranuclear compartment could be identified as the Golgi apparatus. LPS added to the supernatant was internalized by m-IC(cl2) cells and colocalized with TLR4. Continuous exposure to LPS led to a tolerant phenotype but did not alter TLR4 expression nor cellular distribution. Thus, intestinal epithelial cells might be able to provide the initial proinflammatory signal to attract professional immune cells to the side of infection. The cytoplasmic location of TLR4, which is identical to the final location of internalized LPS, further indicates an important role of cellular internalization and cytoplasmic traffic in the process of innate immune recognition.