Cargando…

Potential Role of Phosphatidylinositol 3 Kinase, rather than DNA-dependent Protein Kinase, in CpG DNA–induced Immune Activation

Unmethylated CpG motifs present in bacterial DNA stimulate a strong innate immune response. There is evidence that DNA-dependent protein kinase (DNA-PK) mediates CpG signaling. Specifically, wortmannin (an inhibitor of phosphatidylinositol 3 kinase [PI3]-kinases including DNA-PK) interferes with CpG...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishii, Ken J., Takeshita, Fumihiko, Gursel, Ihsan, Gursel, Mayda, Conover, Jacqueline, Nussenzweig, Andre, Klinman, Dennis M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193923/
https://www.ncbi.nlm.nih.gov/pubmed/12119352
http://dx.doi.org/10.1084/jem.20020773
Descripción
Sumario:Unmethylated CpG motifs present in bacterial DNA stimulate a strong innate immune response. There is evidence that DNA-dependent protein kinase (DNA-PK) mediates CpG signaling. Specifically, wortmannin (an inhibitor of phosphatidylinositol 3 kinase [PI3]-kinases including DNA-PK) interferes with CpG-dependent cell activation, and DNA-PK knockout (KO) mice fail to respond to CpG stimulation. Current studies establish that wortmannin actually inhibits the uptake and colocalization of CpG DNA with toll-like receptor (TLR)-9 in endocytic vesicles, thereby preventing CpG-induced activation of the NF-κB signaling cascade. We find that DNA-PK is not involved in this process, since three strains of DNA-PK KO mice responded normally to CpG DNA. These results support a model in which CpG signaling is mediated through TLR-9 but not DNA-PK, and suggest that wortmannin-sensitive member(s) of the PI3-kinase family play a critical role in shuttling CpG DNA to TLR-9.