Cargando…
Antagonistic Variant Virus Prevents Wild-type Virus-induced Lethal Immunopathology
Altered peptide ligands (APLs) and their antagonistic or partial agonistic character–influencing T cell activation have mainly been studied in vitro Some studies have shown APLs as a viral escape mechanism from cytotoxic CD8(+) T cell responses in vivo. However, whether infection or superinfection w...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194044/ https://www.ncbi.nlm.nih.gov/pubmed/12391015 http://dx.doi.org/10.1084/jem.20012045 |
Sumario: | Altered peptide ligands (APLs) and their antagonistic or partial agonistic character–influencing T cell activation have mainly been studied in vitro Some studies have shown APLs as a viral escape mechanism from cytotoxic CD8(+) T cell responses in vivo. However, whether infection or superinfection with a virus displaying an antagonistic T cell epitope can alter virus–host relationships via inhibiting T cell–mediated immunopathology is unclear. Here, we evaluated a recently described CD4(+) T cell escape lymphocytic choriomeningitis virus (LCMV) variant that in vitro displayed antagonistic characteristics for the major histocompatibility complex class II–restricted mutated epitope. Mice transgenic for the immunodominant LCMV-specific T helper epitope that usually succumb to wild-type LCMV-induced immunopathology, survived if they were simultaneously coinfected with antagonistic variant but not with control virus. The results illustrate that a coinfecting APL-expressing virus can shift an immunopathological virus–host relationships in favor of host survival. This may play a role in poorly cytopathic long-lasting virus carrier states in humans. |
---|