Cargando…
CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2
We investigated the effect of a synthetic cannabinoid, WIN 55,212-2 on excitatory postsynaptic currents (EPSCs) evoked by stimulation of Schaffer collaterals in CA1 pyramidal cells. Bath application of WIN 55,212-2 reduced the amplitude of EPSCs in dose-dependent manner tested between 0.01 nM and 30...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194164/ https://www.ncbi.nlm.nih.gov/pubmed/17714744 http://dx.doi.org/10.1016/j.neuropharm.2007.07.003 |
_version_ | 1782147641028640768 |
---|---|
author | Németh, Beáta Ledent, Catherine Freund, Tamás F. Hájos, Norbert |
author_facet | Németh, Beáta Ledent, Catherine Freund, Tamás F. Hájos, Norbert |
author_sort | Németh, Beáta |
collection | PubMed |
description | We investigated the effect of a synthetic cannabinoid, WIN 55,212-2 on excitatory postsynaptic currents (EPSCs) evoked by stimulation of Schaffer collaterals in CA1 pyramidal cells. Bath application of WIN 55,212-2 reduced the amplitude of EPSCs in dose-dependent manner tested between 0.01 nM and 30 μM. In rats and mice, this cannabinoid ligand inhibited excitatory synapses in two steps at the nM and μM concentrations. When the function of CB(1) cannabinoid receptors (CB(1)R) was impaired, either by the application of a CB(1)R antagonist AM251, or by using CB(1)R knockout mice, WIN 55,212-2 in μM concentrations could still significantly reduced the amplitude of EPSCs. WIN 55,212-2 likely affected the efficacy of excitatory transmission only at presynaptic sites, since both at low and high doses the paired pulse ratio of EPSC amplitude was significantly increased. The inactive enantiomer, WIN 55,212-3, mimicked the effect of WIN 55,212-2 applied in high doses. In further experiments we found that the CB(1)R-independent effect of 10 μM WIN 55,212-2 at glutamatergic synapses was fully abolished, when slices were pre-treated with ω-conotoxin GVIA, but not with ω-agatoxin IVA. These data suggest that, in the hippocampus, WIN 55,212-2 reduces glutamate release from Schaffer collaterals solely via CB(1)Rs in the nM concentration range, whereas in μM concentrations, WIN 55,212-2 suppresses excitatory transmission, in addition to activation of CB(1)Rs, by directly blocking N-type voltage-gated Ca(2+) channels independent of CB(1)Rs. |
format | Text |
id | pubmed-2194164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21941642008-01-15 CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 Németh, Beáta Ledent, Catherine Freund, Tamás F. Hájos, Norbert Neuropharmacology Article We investigated the effect of a synthetic cannabinoid, WIN 55,212-2 on excitatory postsynaptic currents (EPSCs) evoked by stimulation of Schaffer collaterals in CA1 pyramidal cells. Bath application of WIN 55,212-2 reduced the amplitude of EPSCs in dose-dependent manner tested between 0.01 nM and 30 μM. In rats and mice, this cannabinoid ligand inhibited excitatory synapses in two steps at the nM and μM concentrations. When the function of CB(1) cannabinoid receptors (CB(1)R) was impaired, either by the application of a CB(1)R antagonist AM251, or by using CB(1)R knockout mice, WIN 55,212-2 in μM concentrations could still significantly reduced the amplitude of EPSCs. WIN 55,212-2 likely affected the efficacy of excitatory transmission only at presynaptic sites, since both at low and high doses the paired pulse ratio of EPSC amplitude was significantly increased. The inactive enantiomer, WIN 55,212-3, mimicked the effect of WIN 55,212-2 applied in high doses. In further experiments we found that the CB(1)R-independent effect of 10 μM WIN 55,212-2 at glutamatergic synapses was fully abolished, when slices were pre-treated with ω-conotoxin GVIA, but not with ω-agatoxin IVA. These data suggest that, in the hippocampus, WIN 55,212-2 reduces glutamate release from Schaffer collaterals solely via CB(1)Rs in the nM concentration range, whereas in μM concentrations, WIN 55,212-2 suppresses excitatory transmission, in addition to activation of CB(1)Rs, by directly blocking N-type voltage-gated Ca(2+) channels independent of CB(1)Rs. Pergamon Press 2008-01 /pmc/articles/PMC2194164/ /pubmed/17714744 http://dx.doi.org/10.1016/j.neuropharm.2007.07.003 Text en © 2008 Elsevier Ltd. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Németh, Beáta Ledent, Catherine Freund, Tamás F. Hájos, Norbert CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 |
title | CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 |
title_full | CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 |
title_fullStr | CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 |
title_full_unstemmed | CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 |
title_short | CB(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2 |
title_sort | cb(1) receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by win 55,212-2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194164/ https://www.ncbi.nlm.nih.gov/pubmed/17714744 http://dx.doi.org/10.1016/j.neuropharm.2007.07.003 |
work_keys_str_mv | AT nemethbeata cb1receptordependentandindependentinhibitionofexcitatorypostsynapticcurrentsinthehippocampusbywin552122 AT ledentcatherine cb1receptordependentandindependentinhibitionofexcitatorypostsynapticcurrentsinthehippocampusbywin552122 AT freundtamasf cb1receptordependentandindependentinhibitionofexcitatorypostsynapticcurrentsinthehippocampusbywin552122 AT hajosnorbert cb1receptordependentandindependentinhibitionofexcitatorypostsynapticcurrentsinthehippocampusbywin552122 |