Cargando…

Elimination In Vivo of Developing T Cells by Natural Killer Cells

Natural killer cells gauge the absence of self class I MHC on susceptible target cells by means of inhibitory receptors such as members of the Ly49 family. To initiate killing by natural killer cells, a lack of inhibitory signals must be accompanied by the presence of activating ligands on the targe...

Descripción completa

Detalles Bibliográficos
Autores principales: Schott, Eckart, Bonasio, Roberto, Ploegh, Hidde L.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194238/
https://www.ncbi.nlm.nih.gov/pubmed/14568980
http://dx.doi.org/10.1084/jem.20030918
Descripción
Sumario:Natural killer cells gauge the absence of self class I MHC on susceptible target cells by means of inhibitory receptors such as members of the Ly49 family. To initiate killing by natural killer cells, a lack of inhibitory signals must be accompanied by the presence of activating ligands on the target cell. Although natural killer cell–mediated rejection of class I MHC–deficient bone marrow (BM) grafts is a matter of record, little is known about the targeting in vivo of specific cellular subsets by natural killer cells. We show here that development of class I MHC–negative thymocytes is delayed as a result of natural killer cell toxicity after grafting of a class I MHC–positive host with class I MHC–negative BM. Double positive thymocytes that persist in the presence of natural killer cells display an unusual T cell receptor–deficient phenotype, yet nevertheless give rise to single positive thymocytes and yield mature class I MHC–deficient lymphocytes that accumulate in the class I MHC–positive host. The resulting class I MHC–deficient CD8 T cells are functional and upon activation remain susceptible to natural killer cell toxicity in vivo. Reconstitution of class I MHC–deficient BM precursors with H2-K(b) by retroviral transduction fully restores normal thymic development.