Cargando…
A framework for significance analysis of gene expression data using dimension reduction methods
BACKGROUND: The most popular methods for significance analysis on microarray data are well suited to find genes differentially expressed across predefined categories. However, identification of features that correlate with continuous dependent variables is more difficult using these methods, and lon...
Autores principales: | Gidskehaug, Lars, Anderssen, Endre, Flatberg, Arnar, Alsberg, Bjørn K |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194745/ https://www.ncbi.nlm.nih.gov/pubmed/17877799 http://dx.doi.org/10.1186/1471-2105-8-346 |
Ejemplares similares
-
The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis
por: Selvik, Linn-Karina M, et al.
Publicado: (2013) -
Molecular Resistance Fingerprint of Pemetrexed and Platinum in a Long-Term Survivor of Mesothelioma
por: Røe, Oluf Dimitri, et al.
Publicado: (2012) -
Importance of data structure in comparing two dimension reduction methods for classification of microarray gene expression data
por: Truntzer, Caroline, et al.
Publicado: (2007) -
Blood Gene Expression and Vascular Function Biomarkers in Professional Saturation Diving
por: Kiboub, Fatima Z., et al.
Publicado: (2018) -
Small RNAs are differentially expressed in autoimmune and non-autoimmune diabetes and controls
por: Sørgjerd, Elin Pettersen, et al.
Publicado: (2022)