Cargando…
Radiocalcium Release by Stimulated and Potassium-Treated Sartorius Muscles of the Frog
Stimulation of frog (Rana pipiens) sartorius muscle accelerates release of Ca(45), but only during the period of stimulation. No appreciable difference is obtained in the calcium released per impulse whether stimulation is at a rate of 20/sec. or 0.5/sec. However, prior stimulation may appreciably i...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1960
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195013/ https://www.ncbi.nlm.nih.gov/pubmed/14445448 |
Sumario: | Stimulation of frog (Rana pipiens) sartorius muscle accelerates release of Ca(45), but only during the period of stimulation. No appreciable difference is obtained in the calcium released per impulse whether stimulation is at a rate of 20/sec. or 0.5/sec. However, prior stimulation may appreciably increase the loss per impulse. In unfatigued muscles, the minimum amount of calcium liberated during an isotonic twitch is estimated to be about that previously calculated to enter, viz. 0.2 µµmole/cm(2). The time course of radiocalcium release during potassium depolarization depends on the nature of the contracture. When contracture is isometric, the rate of escape is doubled and declines only slowly; if isotonic, the rate is quadrupled but declines in a few minutes to a level maintained at about double that before potassium. The minimal calcium release during the first 10 minutes of potassium treatment is estimated to be about the same in both cases and about one-half to one-third the uptake. This, and especially the close equality of calcium entry and exit during electrical stimulation, are pointed out as not necessarily inconsistent with a transitory net entry of calcium, comparable to the influx, into restricted regions of the individual fibers. |
---|