Cargando…
Evidences from Action Spectra for a Specific Participation of Chlorophyll b in Photosynthesis
Rate of oxygen evolution in photosynthesis was measured as the current from a polarized platinum electrode covered by a thin layer of Chlorella. The arrangement gave a reproducibly measurable rate of photosynthesis proportional to light intensity at the low levels used and gave rapid response to cha...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1960
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2195029/ https://www.ncbi.nlm.nih.gov/pubmed/14425592 |
Sumario: | Rate of oxygen evolution in photosynthesis was measured as the current from a polarized platinum electrode covered by a thin layer of Chlorella. The arrangement gave a reproducibly measurable rate of photosynthesis proportional to light intensity at the low levels used and gave rapid response to changes in illumination. Two phenomena have been explored. The Emerson effect was observed as an enhancement of photosynthesis in long wavelength red light (700 mµ) when shorter wavelengths were added. Two light beams of wavelengths 653 and 700 mµ when presented together gave a photosynthetic rate about 25 per cent higher than the sum of the rates obtained separately. Large and reproducible transients in rate of oxygen evolution were observed accompanying change in illumination between two wavelengths adjusted in intensity to support equal steady rates of photosynthesis. The transients were found not to be specifically related to long wavelength red light. Both enhancement and the transients have identical action spectra which are interpreted as demonstrating a specific photochemical participation of chlorophyll b. |
---|